Vol. 142
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-10-10
DC Magnetic Concentrator and Omnidirectional Cascaded Cloak by Using Only One OR Two Homogeneous Anisotropic Materials of Positive Permeability
By
Progress In Electromagnetics Research, Vol. 142, 683-699, 2013
Abstract
A novel concentrator for static magnetic field enhancement is proposed and designed utilizing transformation optics. Compared with other devices for static magnetic field enhancement, our device has many good features: first, our concentrator can achieve a DC magnetic field enhancement in a relatively large free space with high uniformity. Secondly, our concentrator is composed by only one or two homogenous anisotropic materials with principal value greater than zero (without any infinitely large or zero value), which can be achieved by using currently available materials. Thirdly, the geometrical shape of the proposed device determines the enhancement factor and the permeability of the device. After choosing suitable geometrical parameters, we can obtain a concentration with a suitable enhancement factor and a material requirement that is easily achievable. The proposed concentrator will have many important applications in many areas (e.g., magnetic resonance imaging and magnetic sensors). Based on the same theoretical model, we also proposed a cascaded shielding device cloak for static magnetic fields. The proposed DC magnetic shielding device can be realized without using any material of zero permeability, and will have potential applications in, e.g., hiding a metallic object from being detected by a metal locator.
Citation
Fei Sun Sailing He , "DC Magnetic Concentrator and Omnidirectional Cascaded Cloak by Using Only One OR Two Homogeneous Anisotropic Materials of Positive Permeability," Progress In Electromagnetics Research, Vol. 142, 683-699, 2013.
doi:10.2528/PIER13092509
http://www.jpier.org/PIER/pier.php?paper=13092509
References

1. Brown, M. A. and R. C. Semelka, MRI: Basic Principles and Applications, Wiley-Blackwell, 2010.
doi:10.1002/0471467936

2. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254

3. Ripka, P. and M. Janosek, "Advances in magnetic field sensors ," IEEE Sens. J., Vol. 10, No. 6, 1108-1116, 2010.
doi:10.1109/JSEN.2010.2043429

4. Kobayashi, M. and A. Pascual-Leone, "Transcranial magnetic stimulation in neurology," The Lancet Neurology, Vol. 2, No. 3, 145-156, 2003.
doi:10.1016/S1474-4422(03)00321-1

5. Dobson, J., "Magnetic micro- and nano-particle-based targeting for drug and gene delivery," Nanomedicine, Vol. 1, No. 1, 31-37, 2006.
doi:10.2217/17435889.1.1.31

6. Veiseh, O., J. W. Gunn, and M. Zhang, "Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging," J. W. Gunn, and M. Zhang,, Vol. 62, No. 3, 284-304, 2010.

7. , , " ," , National High Magnetic Field Laboratory, http://www.magnet, fsu.deu/usershub/scientificdivisions/dcfield/facilities.html.
doi:10.1016/0921-4526(95)00468-8

8. Iwasa, Iwasa, "Hybrid magnets: A magnet engineer's experience and a proposal for the next generation of hybrids," Physica B, Vol. 216, No. 3-4, 186-192, 1996.
doi:10.1109/TASC.2009.2018440

9. Kiyoshi, T., S. Choi, S. Matsumoto, T. Asano, and D. Uglietti, "Magnetic flux concentrator using Gd-Ba-Cu-O bulk super-conductors," IEEE Transactions on Applied Superconductivity, Vol. 19, No. 3, 2174-2177, 2009.
doi:10.1088/0953-2048/24/10/105012

10. Zhang, Z. Y., S. Matsumoto, S. Choi, R. Teranishi, and T. Kiyoshi, "Comparison of different configurations of NbTimagnetic lenses," Supercond. Sci. Technol., Vol. 24, No. 10, 105012, 2011.
doi:10.1088/0953-2048/25/2/025009

11. Zhang, Z. Y., S. Choi, S. Matsumoto, R. Teranshi, G. Giunchi, A. F. Albisetti, and T. Kiyoshi, "Magnetic lenses using different MgB2 bulk superconductors," Supercond. Sci. Technol., Vol. 25, No. 2, 025009, 2012.
doi:10.1103/PhysRevLett.109.263903

12. Navau, C., J. Prat-Camps, and A. Sanchez, "Magnetic energy harvesting and concentration at a distance by transformation optics," Phys. Rev. Lett., Vol. 109, 263903, 2012.

13. Sun, F. and S. He, "Create a uniform static magnetic field over 50T in a large free space region," Progress In Electromagnetic Research, Vol. 137, 149-157, 2013.

14. Sun, F. and S. He, "Static magnetic field concentration and enhancement using magnetic materials with positive permeability," Progress In Electromagnetic Research, Vol. 142, 579-590, 2013.

15. Gomory, F., M. Solovyov, J. Souc, and C. Navau, "Superconductor-ferromagnetic metamaterials for magnetic cloaking and concentration," Supercond. Sci. Technol., Vol. 26, 074001, 2013.

16. Leonhardt, U. and T. G. Philbin, Geometry and Light: Science of Invisibility, Dover, 2010.
doi:10.1126/science.1125907

17. Pendry, J. B., D. Schuring and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 132, No. 5781, 1780-1782, 2006.
doi:10.1016/j.photonics.2007.07.013

18. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloak and concentra-tors using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-Fundamentals and Applications, Vol. 6, 87-95, 2008.
doi:10.1088/0022-3727/44/12/125401

19. Li, W., J. Guan and W. Wang, "Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio," J. Phys. D: Appl. Phys., Vol. 44, 125401, 2011.
doi:10.1038/ncomms1176

20. Chen, X., Y. Luo, J. Zhang, K. Jiang J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nature Communications, Vol. 2, 176, 2011.
doi:10.1063/1.4808013

21. , , , The Finite Element Simulation is Conducted by Using Commercial Software COMSOL Multiphysics, http://www.comsol.com.
doi:10.1038/nmat2126

22. Wang, R., Z. L. Mei, and T. J. Cui, "A carpet cloak for static magnetic field," Appl. Phys. Lett., Vol. 102, 213501, 2013.

23. Magnus, F., B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A D.C. magnetic metamaterial," Nature Materials, Vol. 7, 295-297, 2008.

24. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterials cloak for microwaves," Nature Materials, Vol. 12, 25-28, 2013.