1. Choi, I.-S., "Extraction of scattering center and natural frequency using evolutionary programming-based CLEAN," Ph.D. Dissertation, POSTECH, 2003. Google Scholar
2. Seo, D.-K., K.-T. Kim, I.-S. Choi, and H.-T. Kim, "Wide-angle radar target recognition with subclass concept," Progress In Electromagnetics Research, Vol. 44, 231-248, 2004.
doi:10.2528/PIER03060301 Google Scholar
3. Cho, S.-W. and J.-H. Lee, "Effect of threshold value on the performance of natural frequency -based radar target recognition," Progress In Electromagnetics Research, Vol. 135, 527-562, 2013.
doi:10.2528/PIER12103104 Google Scholar
4. Kim, K.-T. and H.-T. Kim, "One-dimensional scattering centre extraction for efficient radar target classification," IEE Proceedings | Radar, Sonar and Navigation, Vol. 146, No. 3, 147-158, Jun. 1999.
doi:10.1163/156939303322226464 Google Scholar
5. Choi, I.-S., D.-K. Seo, J.-K. Bang, H.-T. Kim, and E. J. Rothwell, "Radar target recognition using one-dimensional evolutionary programming-based CLEAN," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 763-784, 2003.
doi:10.2528/PIER09030804 Google Scholar
6. Kim, K.-T., D.-K. Seo, and H.-T. Kim, "Radar target identification using one-dimensional scattering centres," IEE Proceedings | Radar, Sonar and Navigation, Vol. 148, No. 5, 285-296, Oct. 2001.
doi:10.1163/156939305775570512 Google Scholar
7. Li, X.-F., Y.-J. Xie, and R. Yang, "Bistatic RCS prediction for complex targets using modified current marching technique," Progress In Electromagnetics Research, Vol. 93, 13-28, 2009. Google Scholar
8. Alivizatos, E. G., M. N. Petsios, and N. K. Uzunoglu, "Towards a range-doppler UHF multistatic radar for the detection of non-cooperative targets with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2015-2031, 2005. Google Scholar
9. Wills, N. J., Bistatic Radar, 2nd Ed., 2007.
doi:10.2528/PIER10010603
10. Willis, N. J. and H. D. Griffths, "Advances in Bistatic Radar,", 2007. Google Scholar
11. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.1155/ASP/2006/35043 Google Scholar
12. Lee, S.-J. and I.-S. Choi, "Bistatic radar target classification using time-frequency analysis and multilayered perceptron neural network," PIERS Proceedings, 1569-1671, Mar. 2011.
doi:10.1109/8.1144 Google Scholar
13. Radoi, E., A. Quinquis, and F. Totir, "Supervised self-organizing classification of super resolution ISAR images: An anechoic chamber experiment," EURASIP Journal on Applied Signal Processing, Vol. 2006, 1-14, 2006.
doi:10.1109/TAES.2012.6324734 Google Scholar
14. Taso, J. and R. D. Steinberg, "Reduction of sidelobe and speckle artifacts in microwave imaging: The CLEAN technique," IEEE Transactions Antennas and Propagation, Vol. 36, No. 4, 543-556, 1988.
doi:10.1109/TAP.1987.1144210 Google Scholar
15. Misiurewicz, J., K. S. Kulpa, Z. Czekala, and T. A. Filipek, "Radar detection of helicopters with application of CLEAN method," IEEE Transactions Aerospace and Electronic Systems, Vol. 48, No. 4, 3525-3537, 2012.
doi:10.1109/TSP.2003.818908 Google Scholar
16. Hurst, M. P. and R. Mittra, "Scattering center analysis via Prony's method," IEEE Transactions Antennas and Propagation, Vol. 35, No. 8, 98-988, Aug. 1987. Google Scholar
17. Lee, J.-H., I.-S. Choi, and H.-T. Kim, "Natural frequency-based neural network approach to radar target recognition," IEEE Transactions on Signal Processing, Vol. 51, No. 12, 3191-3197, Dec. 2003. Google Scholar