1. IEC 62305-3, "Protection Against Lightning --- Part 3: Physical Damage to Structures and Life Hazard,", 2006.
doi:10.1109/TPAS.1984.318405 Google Scholar
2. Master, M. J. and M. A. Uman, "Lightning-induced voltage on power line: Theory ," IEEE Trans. on Power, Apparatus, Syst., Vol. 103, 2502-2518, Sep. 1984..
doi:10.1029/JD095iD09p13621 Google Scholar
3. Diendorfer, G. and M. A. Uman, "An improved return stroke model with specified channel-base current," J. Geophys. Res., Vol. 95, No. 13, 13621-13644, 1990.
doi:10.1109/TAP.1986.1143721 Google Scholar
4. Cooray, V. and F. de la Rosa, "Shapes and amplitudes of the initial peaks of lightning-induced voltage in power lines over ¯nitely conducting earth: Theory and comparison with experiment," IEEE Trans. on Antennas and Propagat., Vol. 34, 88-92, Jan. 1986. Google Scholar
5. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-Hybrid Methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011. Google Scholar
6. Izadi, M., "Evaluation of lightning current and velocity pro¯les along lightning channel using measured magnetic flux density," Progress in Electromagnetics Research, Vol. 130, 473-492, 2012. Google Scholar
7. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and V. Cooray, "Evaluation of lightning return stroke current using measured electromagnetic fields,", Vol. 130, 581-600, 2012. Google Scholar
8. Gomes, C. and M. Z. A. A. Kadir, "Protection of naval systems against electromagnetic effects due to lightning," Progress In Electromagnetics Research, Vol. 113, 333-349, 2011.
doi:10.1109/TPWRD.2003.820196 Google Scholar
9. Paolone, M., C. A. Nucci, E. Petrache, and F. Rachidi, "Mitigation of lightning-induced overvoltage in medium voltage distribution lines by means of periodical grounding of shielding overhead line and of surge arresters: Modelling and experimental validation ," IEEE Trans. on Power Del., Vol. 19, No. 1, 423-431, Jan. 2004.
doi:10.1109/15.536087 Google Scholar
10. Rubinstein, M., "An approximate formula for the calculation of the horizontal field from lightning at close, intermediate and long range," IEEE Trans. on Electromagn Compat., Vol. 38, 531-535, 1996.
doi:10.1109/15.736222 Google Scholar
11. Cooray, V. and V. Scuka, "Lightning induced overvoltage in power lines: Validity of various approximations made in overvoltage calculations," IEEE Trans. on Electromagn. Compat., Vol. 40, No. 4, 355-363, 1998. Google Scholar
12. Norton, K. A., "Propagation of radio waves over the surface of the earth in the upper atmosphere," Proc. IEEE, Vol. 25, 1203-1237, 1937. Google Scholar
13. Maclean, T. S. M. and Z. Wu, "Radiowave Propagation over Ground," Chapman and Hall, 1993.
doi:10.1029/91RS02918 Google Scholar
14. Cooray, V., "Horizontal fields generated by return strokes," Radio Sci., Vol. 27, 529-537, Jul 1992.
doi:10.1109/15.917942 Google Scholar
15. Cooray, V., "Underground electromagnetic ¯elds generated by the return strokes of lightning flashes," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 1, 75-84, 2001.
doi:10.1109/TEMC.2007.897127 Google Scholar
16. Delfio, F., R. rocopio, M. Rossi, et al. "An algorithm for the exact evaluation of the underground lightning electromagnetic fields," IEEE Trans. on Electromagn. Compat., Vol. 49, No. 2, 401-411, 2007. Google Scholar
17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method , 3rd Ed., Artech House, 2005.
18. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetic Research, Vol. 132, 159-175, 2012. Google Scholar
19. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012. Google Scholar
20. Xiong, R., B. Chen, Y.-X. Mao, and W. Yang, "Optimal programs to reduce the resistance of grounding systems," Progress In Electromagnetics Research, Vol. 139, 211-227, 2013. Google Scholar
21. Xiong, R., B. Chen, L.-H. Shi, Y.-T. Duan, and G. Zhang, "A simple method to reduce the peak transient grounding resistance value of a grounding system," Progress In Electromagnetics Research , Vol. 138, 255-267, 2013. Google Scholar
22. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11082512 Google Scholar
23. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stage split-step unconditional-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER10102707 Google Scholar
24. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER11112702 Google Scholar
25. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A Novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.1109/28.293730 Google Scholar
26. Morris, M. E., R. J. Fisher, G. H. Schnetzer, K. O. Merewether, and R. E. Jorgenson, "Rocket-triggered lightning studies for the protection of critical assets," IEEE Transactions on Industry Applications, Vol. 30, No. 3, 355-373, 1994.
doi:10.1109/61.736741 Google Scholar
27. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground," IEEE Trans. on Power Del., Vol. 14, No. 1, 294-302, 1999. Google Scholar
28. Rakov, V. A. and A. A. Dulzon, "Calculated electromagnetic fields of lightning return stroke," Tekh. Elektrodianm., Vol. 1, 87-89, 1987.
doi:10.1109/TEMC.1981.303970 Google Scholar
29. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. on Electromagn. Compat., Vol. 23, 377-382, 1981. Google Scholar
30. Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analyses," Scientia Sinica, Series A, Vol. XXVII, 1063-1076, 1984.
doi:10.1006/jcph.1994.1159 Google Scholar
31. Berenger, J. P., "A perfectly matched layer for the absorption of the electromagnetic waves," J. Comput. Phys., 185-200, 1994. Google Scholar
32. Chen, B., D. G. Fang, and B. H. Zhou, "Modified berenger PML absorbing boundary condition for FDTD meshes," IEEE Microwave and Guided Wave Letters, Vol. 44, No. 12, 1630-1639, Nov. 1995.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
33. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Lett.,, Vol. 27, 334-339, 2000. Google Scholar
34. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3-D subgridding FDTD algorithm for large simulation," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.
doi:10.2528/PIER10041603 Google Scholar
35. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010. Google Scholar
36. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011. Google Scholar
37. Baba, Y. and V. A. Rakov, "On the use of lumped sources in lightning return stroke models," J. Geophys Res., Vol. 110, D03101, 2005.
doi:10.1029/JC074i028p06899 Google Scholar
38. Uman, M. A. and D. K. McLain, "Magnetic field of the lightning return stroke," J. Geophys. Res., Vol. 74, 6899-6910, 1969. Google Scholar
39. Nucci, C. A., C. Mazzetti, F. Rachidi, et al. "On lightning return stroke models for LEMP calculations," Proc. 19th Int. Conf. Lightning Protection, Apr. 1988. Google Scholar
40. Bruce, C. E. R. and R. H. Golde, "The lightning discharge," J. Inst. Elect. --- Pt. 2, Vol. 88, 487-520, 1941. Google Scholar
41. Heidler, F., "Traveling current source model for LEMP calculation," Proc. 6th Int. Zurich Symp. Electromagn. Compat. , 157-162, Mar. 1985. Google Scholar