Vol. 144
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-21
Electromagnetic Wave Scattering from Rough Boundaries Interfacing Inhomogeneous Media and Application to Snow-Covered Sea Ice
By
Progress In Electromagnetics Research, Vol. 144, 201-219, 2014
Abstract
In this study a new analytical formulation for electromagnetic wave scattering from rough boundaries interfacing inhomogeneous media is presented based on the first-order approximation of the small perturbation method. First, we considered a scattering problem for a single rough boundary embedded in a piecewise continuously layered medium. As a key step, we introduced auxiliary wave propagation problems that are aimed to link reflection and transmission coefficients in the layered media with particular solutions of one-dimensional wave equations at the mean level of the rough interface. This approach enabled us to express the final solution in a closed form avoiding a prior discretization of the inhomogeneous medium. Second, we naturally extended the obtained solution to an arbitrary number of rough interfaces separating continuously layered media. As a validation step, we demonstrated that available solutions in the literature represent special cases of our general solution. Furthermore, we showed that our numerical results agree well with published data. Finally, as a particular special case, we presented a formulation for scattering from inhomogeneous snow-covered sea ice when the dominant scattering occurs at the snow-ice and air-snow interfaces.
Citation
Alexander S. Komarov, Lotfollah Shafai, and David G. Barber, "Electromagnetic Wave Scattering from Rough Boundaries Interfacing Inhomogeneous Media and Application to Snow-Covered Sea Ice," Progress In Electromagnetics Research, Vol. 144, 201-219, 2014.
doi:10.2528/PIER13111209
References

1. Comiso, J., C. Parkinson, R. Gersten, and L. Stock, "Accelerated decline in the Arctic sea ice cover," Geophys. Res. Lett., Vol. 35, L01703, Jan. 2008.
doi:10.1029/2007GL031972

2. Kwok, R. and D. Rothrock, "Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008," Geophys. Res. Lett., Vol. 36, L15501, Aug. 2009.

3. Kwok, R. and N. Untersteiner, "The thinning of Arctic sea ice," Physics Today, Vol. 64, No. 4, 36-41, Apr. 2011.
doi:10.1063/1.3580491

4. Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, "Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback ," Geophys. Res. Lett., Vol. 34, L19505, Oct. 2007.
doi:DOI:10.1029/2007GL031480

5. Serreze, M. C., M. M. Holland, and J. Stroeve, "Perspectives on the Arctic’s shrinking ice cover," Science, Vol. 315, 1533-1536, Mar. 2007.
doi:DOI:10.1126/science.1139426

6. Komarov, A. S. and D. G. Barber, "Sea ice motion tracking from sequential dual-polarization RADARSAT-2 images," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 1, 121-136, Jan. 2014.
doi:10.1109/TGRS.2012.2236845

7. Thomas, M., C. Kambhamettu, and C. Geiger, "Motion tracking of discontinuous sea ice," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 12, 5064-5079, Dec. 2011.
doi:10.1109/TGRS.2011.2158005

8. Isleifson, D., B. Hwang, D. Barber, R. Scharien, and L. Shafai, "C-Band polarimetric backscattering signatures of newly formed sea ice during fall freeze-up," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 8, 3256-3267, Aug. 2010.
doi:10.1109/TGRS.2010.2043954

9. Moreira, A., P. Prats-Iraola, M. Younis, G. Kreiger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geosci. and Rem. Sens. Magazine, Vol. 1, No. 1, 6-43, Mar. 2013.
doi:10.1109/MGRS.2013.2248301

10. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 3, Artech House, Norwood, MA, 1986.

11. Kim, Y. S., R. Onstott, and R. Moore, "Effect of a snow cover on microwave backscatter from sea ice," IEEE J. Ocean. Eng., Vol. 9, No. 5, 383-388, Dec. 1984.
doi:10.1109/JOE.1984.1145649

12. Carsey, F. D., Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, American Geophysical Union, 1992.
doi:10.1029/GM068

13. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 1, No. 2, Academic, New York, , 1978.

14. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1183-1191, Nov. 1995.
doi:10.1109/TAP.1995.481168

15. Nassar, E. M., J. T. Johnson, and R. Lee, "A numerical model for electromagnetic scattering from sea ice," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 3, 1309-1319, May 2000.
doi:10.1109/36.843024

16. Isleifson, D., I. Jeffrey, L. Shafai, J. LoVetri, and D. G. Barber, "A Monte Carlo method for simulating scattering from sea ice using FVTD," IEEE Trans. Geosci. Remote Sens, Vol. 50, No. 7, 2658-2668, Jul. 2012.
doi:10.1109/TGRS.2011.2173940

17. Rice, S. O., "Reflection of electromagnetic waves from slightly rough surfaces," Commun. Pure Appl. Math., Vol. 4, No. 2--3, 351-378, Aug. 1951.
doi:http://dx.doi.org/10.1002/cpa.3160040206

18. Yarovoy, A. G., R. V. de Jongh, and L. P. Ligthard, "Scattering properties of a statistically rough interface inside a multilayered medium," Radio Sci., Vol. 35, No. 2, 455-462, 2000.
doi:10.1029/1999RS900083

19. Fuks, I. M., "Wave diffraction by a rough boundary of an arbitrary plane-layered medium," IEEE Trans. Antennas Propag., Vol. 49, No. 4, 630-639, Apr. 2001.
doi:10.1109/8.923325

20. Franceschetti, G., P. Imperatore, A. Iodice, D. Riccio, and G. Ruello, "Scattering from layered structures with one rough interface: A unified formulation of perturbative solutions," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1634-1643, Jun. 2008.
doi:10.1109/TGRS.2008.916222

21. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from dielectric structures with two rough boundaries using the small perturbation method," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 8, Aug. 2006.
doi:10.1109/TGRS.2006.872140

22. Imperatore, P., A. Iodice, and D. Riccio, "Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 4, 1056-1072, Apr. 2009.
doi:10.1109/TGRS.2008.2007804

23. Barber, D. G., R. Galley, M. G. Asplin, R. De Abreu, K.-A. Warner, M. Pucko, M. Gupta, S. Prinsenberg, and S. Julien, "Perennial pack ice in the southern Beaufort Sea was not as it appeared in the summer of 2009," Geophys. Res. Lett., Vol. 36, L24501, Oct. 2009.
doi:10.1029/2009GL041434

24. Barber, D. G., "Microwave remote sensing, sea ice and Arctic climate," Phys. Can., Vol. 61, 105-111, Sep. 2005.

25. Fung, A. K. and K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, Boston, MA, 2010.

26. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave Remote Sensing: Active and Passive," Artech House, Vol. 2, 1990.

27. Fung, A. K., "Microwave Scattering and Emission Models and Their Applications," Artech House, 1994.

28. Valenzuela, G. R., "Theories for the interactions of electromagnetic and oceanic waves: A review," Boundary Layer Meteorol., Vol. 13, 61-85, 1978.
doi:10.1007/BF00913863

29. Collin, R. E., Antennas and Radio Wave Propagation, McGraw-Hill, New York, 1985.

30. RADARSAT-2 Product Description RN-SP-52-1238, MacDonald, Dettwiler and Associates Ltd. , Richmond, BC, Canada, 2009.

31. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, Wiley Interscience, 2001.
doi:10.1002/0471224278

32. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 1, Artech House, Norwood, MA, 1986.

33. Stogryn, A. and G. D. Desargant, "The dielectric properties of brine in sea ice at microwave frequencies," IEEE Trans. Antennas Propag., Vol. 33, No. 5, 523-532, May 1985.
doi:10.1109/TAP.1985.1143610

34. Drinkwater, M. R. and G. B. Crocker, "Modeling changes in the dielectric and scattering properties of young snow covered sea ice at GHz frequencies," J. Glaciology, Vol. 34, No. 118, 274-282, 1988.

35. Hallikainen, M., F. Ulaby, and M. Abdelrazik, "Dielectric properties of snow in the 3 to 37GHz range," IEEE Trans. Antennas Propag., Vol. 34, No. 11, 1329-1340, Nov. 1986.
doi:10.1109/TAP.1986.1143757

36. Khenchaf, A., "Bistatic reflection of electromagnetic waves from random rough surfaces. Application to the sea and snowy-covered surfaces," Eur. Phys. J. Applied Physics, Vol. 14, 45-62, 2001.
doi:10.1051/epjap:2001138

37. Gloersen, P. and J. K. Larabee, An Optical Model for the Microwave Properties of Sea Ice, NASA TM-83865, NASA Goddard Space Flight Center, Greenbelt, Maryland, 1981.

38. Mironov, V. L., M. C. Dobson, V. H. Kaupp, S. A. Komarov, and V. N. Kleshchenko, "Generalized refractive mixing dielectric model for moist soils," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 773-785, Apr. 2004.
doi:10.1109/TGRS.2003.823288

39. Vant, M. R., R. B. Gray, R. O. Ramseier, and V. Makios, "Dielectric properties of fresh and sea ice at 10 and 35 GHz," J. Appl. Phys., Vol. 45, No. 11, 4712-4717, 1974.
doi:10.1063/1.1663123

40. Frankenstein, G. and R. Garner, "Equations for determining the brine volume of sea ice from ---- 0.5 C to −22.9 C," J. Glaciol., Vol. 6, No. 48, 943-944, 1967.

41. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microwave Theory Thech., Vol. 19, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617

42. Bellman, R. and R. Vasudevan, Wave Propagation — An Invariant Embedding Approach, D. Reidel Publishing Company, 1986.