1. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proceedings of the IEEE, Vol. 100, No. 4, 824-840, Apr. 2012.
doi:10.1109/JPROC.2011.2182095 Google Scholar
2. Mitola, J., "Cognitive radio architecture evolution," Proceedings of the IEEE, Vol. 97, No. 4, 626-641, Apr. 2009.
doi:10.1109/JPROC.2009.2013012 Google Scholar
3. Vatankhah, A. and S. Boumaiza, "On wideband/multi-band power amplifier suitable for software defined radios in cognitive networks," International Conference on Signals, Circuits and Systems, 1-6, 2009. Google Scholar
4. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Double the band and optimize," IEEE Microwave Magazine, Vol. 13, No. 2, 69-82, Feb. 2012.
doi:10.1109/MMM.2011.2181449 Google Scholar
5. Esch, J., "High-efficiency Doherty power amplifiers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3187-3189, Dec. 2012.
doi:10.1109/JPROC.2012.2219195 Google Scholar
6. Grebennikov, A. and S. Bulja, "High-efciency Doherty power ampliers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3190-3219, Dec. 2012.
doi:10.1109/JPROC.2012.2211091 Google Scholar
7. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "Being seventy-five still young: The Doherty power amplifier," Microwave Journal, Vol. 55, No. 4, 72-88, Apr. 2012. Google Scholar
8. Kim, B., I. Kim, and M. Joughwan, "Advanced Doherty architecture," IEEE Microwave Magazine, Vol. 11, No. 5, 72-86, May 2010.
doi:10.1109/MMM.2010.937098 Google Scholar
9. Colantonio, P., F. Feudo, F. Giannini, R. Giofrµe, and L. Piazzon, "Design of a dual-band GaN Doherty amplifier," Proc. Int. Conference on Microwave Radar and Wireless Communications, 1-4, 2010. Google Scholar
10. Li, X., W. Chen, Z. Zhang, Z. Feng, X. Tang, and K. Mouthaan, "A concurrent dual-band Doherty power amplifier," Proc. Asia-Pacific Microwave Conference, 654-657, 2010. Google Scholar
11. Chen, W., S. A. Bassam, X. Li, Y. Liu, K. Rawat, M. Helaoui, F. M. Ghannouchi, and Z. Feng, "Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges," IEEE Trans. Microwave Theory and Techniques, Vol. 59, No. 10, 2537-2546, Oct. 2011.
doi:10.1109/TMTT.2011.2164089 Google Scholar
12. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines," IEEE Trans. Industrial Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
doi:10.1109/TIE.2011.2176695 Google Scholar
13. Saad, P., P. Colantonio, L. Piazzon, F. Giannini, K. Andersson, and C. Fager, "Design of a oncurrent dual-band 1.8-2.4-GHz GaN-HEMT Doherty power amplifier," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 6, 1840-1849, Jun. 2012.
doi:10.1109/TMTT.2012.2189120 Google Scholar
14. Grebennikov, A. and J. Wong, "A dual-band parallel Doherty power amplifier for wireless applications," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 10, 3214-3222, Oct. 2012.
doi:10.1109/TMTT.2012.2210906 Google Scholar
15. Nghiem, X. A. and R. Negra, "Novel design of a concurrent tri-band GaN-HEMT Doherty power amplifier," Proc. Asia-Pacific Microwave Conference, 364-366, 2012. Google Scholar
16. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Trans. Microwave Theory and Techniques, Vol. 59, No. 4, 934-944, Apr. 2011.
doi:10.1109/TMTT.2010.2098040 Google Scholar
17. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplier exploiting output compensation stages," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Aug. 2012.
doi:10.1109/TMTT.2012.2201745 Google Scholar
18. Gustafsson, D., J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman, and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Trans. Microwave Theory and Techniques, Vol. 61, No. 2, 922-930, Feb. 2013.
doi:10.1109/TMTT.2012.2231421 Google Scholar
19. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, Jan. 2012.
doi:10.1109/TMTT.2011.2175237 Google Scholar
20. Wu, D. Y.-T. and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 10, 3201-3212, Oct. 2012.
doi:10.1109/TMTT.2012.2209446 Google Scholar
21. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "New output combiner for Doherty amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 31-33, Jan. 2013.
doi:10.1109/LMWC.2012.2236308 Google Scholar
22. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "A Doherty amplifier with maximally flat efficiency in the bandwidth," IEEE Proc. Int. Microwave Symposium, 1-3, Seattle, WA, Jun. 2013. Google Scholar
23. Levy, R. and L. F. Lind, "Synthesis of symmetrical branch-guide directional couplers," IEEE Trans. Microwave Theory and Techniques, Vol. 16, No. 2, 80-89, Feb. 1968.
doi:10.1109/TMTT.1968.1126612 Google Scholar
24. Muraguchi, M., T. Yukitake, and Y. Naito, "Synthesis of symmetrical branch-guide directional couplers," IEEE Trans. Microwave Theory and Techniques, Vol. 31, No. 8, 674-678, Aug. 1983.
doi:10.1109/TMTT.1983.1131568 Google Scholar
25. Kumar, S., C. Tannous, and T. Danshin, "A multisection broadband impedance transforming branch-line hybrid," IEEE Trans. Microwave Theory and Techniques, Vol. 43, No. 11, 2517-2523, Nov. 1995.
doi:10.1109/22.473172 Google Scholar
26. Bonney, J. and J. Schoebel, "Synthesis of extremely at broadband multi-section quadrature coupler," Proc. German Microwave Conference, 1-4, 2008. Google Scholar
27. Colantonio, P., F. Giannini, R. Giofrµe, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, May 2009.
doi:10.1002/mmce.20350 Google Scholar
28. Fano, R. M., "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Inst., Vol. 249, 57-83, Jan. 1950.
doi:10.1016/0016-0032(50)90006-8 Google Scholar
29. Bode, H. W., "Network Analysis and Feedback Amplifier Design,", 276-282, Van Nostrand, 1975. Google Scholar
30. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, 120-130, McGraw-Hill, 1980.
31. ripps, S. C., RF Power Amplifiers for Wireless Communications, 20-43, Artech House, 1999.
32. Colantonio, P., F. Giannini, and E. Limiti, High E±ciency RF and Microwave Solid State Power Amplifiers, 160-176, John Wiley & Sons, 2009.
doi:10.1002/9780470746547
33. Chun, Y.-H. and J.-S. Hong, "Compact wide-band branch-line hybrids," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 2, 704-709, Feb. 2006.
doi:10.1109/TMTT.2005.862657 Google Scholar
34. Liou, C.-Y., M.-S. Wu, J.-C. Yeh, Y.-Z. Chueh, and S.-G. Mao, "A novel triple-band microstrip branch-line coupler with arbitrary operating frequencies," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 11, 683-685, Nov. 2009.
doi:10.1109/LMWC.2009.2031998 Google Scholar
35. Piazzon, L., P. Saad, P. Colantonio, F. Giannini, K. Andersson, and C. Fager, "Branch-line coupler design operating in four arbitrary frequencies," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 67-69, Feb. 2012.
doi:10.1109/LMWC.2011.2181349 Google Scholar
36. Piazzon, L., R. Giofrµe, P. Colantonio, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 626-628, 2013.
doi:10.1109/LMWC.2013.2281413 Google Scholar