Vol. 145
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-04-11
A Method for Designing Broadband Doherty Power Amplifiers
By
Progress In Electromagnetics Research, Vol. 145, 319-331, 2014
Abstract
In this contribution, a design approach for the realization of broadband Doherty Power Amplifiers (DPAs) is proposed and demonstrated. The methodology is based on the exploitation of the wideband response of 2-sections branch-line couplers both as input splitter and output combiner of the DPA. These couplers are designed through a CAD optimization process which is specificaly oriented to the developement of DPAs. The method is also applied to realize a GaN based hybrid prototype that shows more than 36% of fractional bandwidth around 2 GHz frequency range, validated through single carriers and modulated signals (3gpp and WiMax). In single carrier mode an efficiency higher than 41% (>50% in saturation, with a peak of 72%) is obtained in 6 dB of output power dynamic range in the entire operating band. Experimental sesults with 5 MHz 3 gpp and WiMax signals shown an average efficiency of 50% and 45% when 37 dBm and 34 dBm of average output power are reached, respectively.
Citation
Luca Piazzon, Rocco Giofre, Paolo Colantonio, and Franco Giannini, "A Method for Designing Broadband Doherty Power Amplifiers," Progress In Electromagnetics Research, Vol. 145, 319-331, 2014.
doi:10.2528/PIER14011301
References

1. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proceedings of the IEEE, Vol. 100, No. 4, 824-840, Apr. 2012.
doi:10.1109/JPROC.2011.2182095        Google Scholar

2. Mitola, J., "Cognitive radio architecture evolution," Proceedings of the IEEE, Vol. 97, No. 4, 626-641, Apr. 2009.
doi:10.1109/JPROC.2009.2013012        Google Scholar

3. Vatankhah, A. and S. Boumaiza, "On wideband/multi-band power amplifier suitable for software defined radios in cognitive networks," International Conference on Signals, Circuits and Systems, 1-6, 2009.        Google Scholar

4. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Double the band and optimize," IEEE Microwave Magazine, Vol. 13, No. 2, 69-82, Feb. 2012.
doi:10.1109/MMM.2011.2181449        Google Scholar

5. Esch, J., "High-efficiency Doherty power amplifiers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3187-3189, Dec. 2012.
doi:10.1109/JPROC.2012.2219195        Google Scholar

6. Grebennikov, A. and S. Bulja, "High-efciency Doherty power ampliers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3190-3219, Dec. 2012.
doi:10.1109/JPROC.2012.2211091        Google Scholar

7. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "Being seventy-five still young: The Doherty power amplifier," Microwave Journal, Vol. 55, No. 4, 72-88, Apr. 2012.        Google Scholar

8. Kim, B., I. Kim, and M. Joughwan, "Advanced Doherty architecture," IEEE Microwave Magazine, Vol. 11, No. 5, 72-86, May 2010.
doi:10.1109/MMM.2010.937098        Google Scholar

9. Colantonio, P., F. Feudo, F. Giannini, R. Giofrµe, and L. Piazzon, "Design of a dual-band GaN Doherty amplifier," Proc. Int. Conference on Microwave Radar and Wireless Communications, 1-4, 2010.        Google Scholar

10. Li, X., W. Chen, Z. Zhang, Z. Feng, X. Tang, and K. Mouthaan, "A concurrent dual-band Doherty power amplifier," Proc. Asia-Pacific Microwave Conference, 654-657, 2010.        Google Scholar

11. Chen, W., S. A. Bassam, X. Li, Y. Liu, K. Rawat, M. Helaoui, F. M. Ghannouchi, and Z. Feng, "Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges," IEEE Trans. Microwave Theory and Techniques, Vol. 59, No. 10, 2537-2546, Oct. 2011.
doi:10.1109/TMTT.2011.2164089        Google Scholar

12. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines," IEEE Trans. Industrial Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
doi:10.1109/TIE.2011.2176695        Google Scholar

13. Saad, P., P. Colantonio, L. Piazzon, F. Giannini, K. Andersson, and C. Fager, "Design of a oncurrent dual-band 1.8-2.4-GHz GaN-HEMT Doherty power amplifier," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 6, 1840-1849, Jun. 2012.
doi:10.1109/TMTT.2012.2189120        Google Scholar

14. Grebennikov, A. and J. Wong, "A dual-band parallel Doherty power amplifier for wireless applications," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 10, 3214-3222, Oct. 2012.
doi:10.1109/TMTT.2012.2210906        Google Scholar

15. Nghiem, X. A. and R. Negra, "Novel design of a concurrent tri-band GaN-HEMT Doherty power amplifier," Proc. Asia-Pacific Microwave Conference, 364-366, 2012.        Google Scholar

16. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Trans. Microwave Theory and Techniques, Vol. 59, No. 4, 934-944, Apr. 2011.
doi:10.1109/TMTT.2010.2098040        Google Scholar

17. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplier exploiting output compensation stages," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Aug. 2012.
doi:10.1109/TMTT.2012.2201745        Google Scholar

18. Gustafsson, D., J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman, and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Trans. Microwave Theory and Techniques, Vol. 61, No. 2, 922-930, Feb. 2013.
doi:10.1109/TMTT.2012.2231421        Google Scholar

19. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, Jan. 2012.
doi:10.1109/TMTT.2011.2175237        Google Scholar

20. Wu, D. Y.-T. and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 10, 3201-3212, Oct. 2012.
doi:10.1109/TMTT.2012.2209446        Google Scholar

21. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "New output combiner for Doherty amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 31-33, Jan. 2013.
doi:10.1109/LMWC.2012.2236308        Google Scholar

22. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "A Doherty amplifier with maximally flat efficiency in the bandwidth," IEEE Proc. Int. Microwave Symposium, 1-3, Seattle, WA, Jun. 2013.        Google Scholar

23. Levy, R. and L. F. Lind, "Synthesis of symmetrical branch-guide directional couplers," IEEE Trans. Microwave Theory and Techniques, Vol. 16, No. 2, 80-89, Feb. 1968.
doi:10.1109/TMTT.1968.1126612        Google Scholar

24. Muraguchi, M., T. Yukitake, and Y. Naito, "Synthesis of symmetrical branch-guide directional couplers," IEEE Trans. Microwave Theory and Techniques, Vol. 31, No. 8, 674-678, Aug. 1983.
doi:10.1109/TMTT.1983.1131568        Google Scholar

25. Kumar, S., C. Tannous, and T. Danshin, "A multisection broadband impedance transforming branch-line hybrid," IEEE Trans. Microwave Theory and Techniques, Vol. 43, No. 11, 2517-2523, Nov. 1995.
doi:10.1109/22.473172        Google Scholar

26. Bonney, J. and J. Schoebel, "Synthesis of extremely at broadband multi-section quadrature coupler," Proc. German Microwave Conference, 1-4, 2008.        Google Scholar

27. Colantonio, P., F. Giannini, R. Giofrµe, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, May 2009.
doi:10.1002/mmce.20350        Google Scholar

28. Fano, R. M., "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Inst., Vol. 249, 57-83, Jan. 1950.
doi:10.1016/0016-0032(50)90006-8        Google Scholar

29. Bode, H. W., "Network Analysis and Feedback Amplifier Design,", 276-282, Van Nostrand, 1975.        Google Scholar

30. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, 120-130, McGraw-Hill, 1980.

31. ripps, S. C., RF Power Amplifiers for Wireless Communications, 20-43, Artech House, 1999.

32. Colantonio, P., F. Giannini, and E. Limiti, High E±ciency RF and Microwave Solid State Power Amplifiers, 160-176, John Wiley & Sons, 2009.
doi:10.1002/9780470746547

33. Chun, Y.-H. and J.-S. Hong, "Compact wide-band branch-line hybrids," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 2, 704-709, Feb. 2006.
doi:10.1109/TMTT.2005.862657        Google Scholar

34. Liou, C.-Y., M.-S. Wu, J.-C. Yeh, Y.-Z. Chueh, and S.-G. Mao, "A novel triple-band microstrip branch-line coupler with arbitrary operating frequencies," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 11, 683-685, Nov. 2009.
doi:10.1109/LMWC.2009.2031998        Google Scholar

35. Piazzon, L., P. Saad, P. Colantonio, F. Giannini, K. Andersson, and C. Fager, "Branch-line coupler design operating in four arbitrary frequencies," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 67-69, Feb. 2012.
doi:10.1109/LMWC.2011.2181349        Google Scholar

36. Piazzon, L., R. Giofrµe, P. Colantonio, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 626-628, 2013.
doi:10.1109/LMWC.2013.2281413        Google Scholar