Vol. 145
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-03-28
A General Approach for Brushed DC Machines Simulation Using a Dedicated Field/Circuit Coupled Method
By
Progress In Electromagnetics Research, Vol. 145, 213-227, 2014
Abstract
This paper deals with the modeling of the brushed DC motor used as a reinforced starter for a micro-hybrid automotive application. The aim of such a system, also called ``stop-start'', is to stop a combustion engine when the vehicle pulls to a stop, and to restart it when the driver accelerates. A reinforced starter is able to ensure this new function in addition to the classical cold start. Then, its life time has to be widely increased in comparison with a classical starter. They have to be optimized, and more especially their process of commutation in order to minimize commutator and brush wears, and thereby increase the lifetime of the device up to the whole life of the vehicle. The main contribution of the paper is the development of a coupled FE-circuit model taking into account local saturation and arc phenomena. Brush-segment contact resistance introduced in the circuit model has been computed efficiently and compared to measures. The whole model has been validated by experimental measurements which are carried out with specific experimental test benches.
Citation
Raphael Andreux, Julien Fontchastagner, Noureddine Takorabet, Nicolas Labbe, and Jean-Sebastien Metral, "A General Approach for Brushed DC Machines Simulation Using a Dedicated Field/Circuit Coupled Method," Progress In Electromagnetics Research, Vol. 145, 213-227, 2014.
doi:10.2528/PIER14011402
References

1. Griffo, A., D. Drury, T. Sawata, and P. H. Mellor, "Sensorless starting of a wound-field synchronous starter/generator for aerospace applications," IEEE Trans. Ind. Electron., Vol. 59, No. 9, 3579-3587, 2012.
doi:10.1109/TIE.2011.2159953

2. Chen, Z., H. Wang, and Y. Yang, "A doubly salient starter/generator with two-section twisted-rotor structure for potential future aerospace application," IEEE Trans. Ind. Electron., Vol. 59, No. 9, 3588-3595, 2012.
doi:10.1109/TIE.2011.2159951

3. Wang, C.-F., M.-J. Jin, J.-X. Shen, and C. Yuan, "A permanent magnet integrated starter generator for electric vehicle onboard range extender application," IEEE Trans. Magn., Vol. 48, No. 4, 1625-1628, 2012.
doi:10.1109/TMAG.2011.2173469

4. Seo, J.-H., S.-M. Kim, and H.-K. Jun, "Rotor-design strategy of IPMSM for 42V integrated starter generator," IEEE Trans. Magn., Vol. 46, No. 6, 2458-2461, 2010.
doi:10.1109/TMAG.2010.2043417

5. Chai, F., Y. Pei, X. Li, B. Guo, and S. Cheng, "The performance research of starter-generator based on reluctance torque used in HEV," IEEE Trans. Magn., Vol. 45, No. 9, 2458-2461, 2010.

6. Fukami, T., Y. Matsuura, K. Shima, M. Momiyama, and M. Kawamura, "A multipole synchronous machine with non-overlapping concentrated armature and field windings on the stator," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2583-2591, 2012.
doi:10.1109/TIE.2011.2157293

7. Di Stefano, R. and F. Marignetti, "Electromagnetic analysis of axial-flux permanent magnet synchronous machines with fractional windings with experimental validation," IEEE Trans. Ind. Electron., Vol. 59, 2573-2582, 2012.
doi:10.1109/TIE.2011.2165458

8. Pavlovcic, F., "The commutator optimization due to electrically caused wear," Proc. XIX International Conference on Electrical Machines (ICEM'2010), 1-6, Sep. 6-8, 2010.

9. Vauquelin, A., J.-P. Vilain, S. Vivier, N. Labbe, and B. Dupeux, "A new modeling of DC machine taking into account commutation effects," Proc. XVIII International Conference on Electrical achines (ICEM'2008), 1-6, Villamoura, Portugal, Sep. 6-9, 2008.

10. Wang, H., "Modeling of universal motor performance and brush commutation using finite element computed inductance and resistance matrices," IEEE Trans. Energy Convers., Vol. 15, No. 3, 257-263, 2000.
doi:10.1109/60.875490

11. Di-Gerlando, A. and R. Perini, "Model of commutation phenomena in a universal motor," IEEE Trans. Energy Convers., Vol. 21, No. 1, 27-33, 2006.
doi:10.1109/TEC.2004.841514

12. Batzel, T. D., N. C. Becker, and M. Comanescu, "Analysis of brushed dc machinery fault with coupled finite element method and equivalent circuit model," IJME, Vol. 11, No. 2, 5-13, 2011.

13. Matsuda, T., T. Moriyama, N. Konda, Y. Suzuki, and Y. Hashimoto, "Method for analyzing the commutation in small universal motors," IEE PROC-B, Vol. 142, 123{-130, 1995.

14. Glowacz, Z. and W. Glowacz, "Mathematical model of dc motor for analysis of commutation processes," EPQU, Vol. 8, 65-68, 2007.

15. Andreux, R., J. Fontchastagner, N. Takorabet, N. Labbe, and J-S. Metral, "Magnetic field-electric circuit coupled method for brush DC motor simulations," Proc. XXth International Conference on Electrical Machines (ICEM'2012), Marseille, France, Sep. 2-5, 2012.

16. Sincero, G. C. R., J. Ghannou, J. Cros, and P. Viarouge, "Collector model for simulation of brush machines," Math. Comput. Simulation, Vol. 81, 340-353, 2010.
doi:10.1016/j.matcom.2010.07.025

17. Lin, D., P. Zhou, W. N. Fu, B. Ionescu, and Z. J. Cendes, "Flexible approach for brush-commutation machine simulation," IEEE Trans. Magn., Vol. 44, No. 6, 1542-1545, 2008.
doi:10.1109/TMAG.2007.916241

18. Sincero, G. C. R., J. Cros, and P. Viarouge, "Arc models for simulation of brush motor commutations," IEEE Trans. Magn., Vol. 44, No. 6, 1518-1521, 2008.
doi:10.1109/TMAG.2007.915087

19. Willing, M., T. Miller, and I. Corral, "A brush model for detailed commutation analysis of universal motors," Proc. XXth International Conference on Electrical Machines (ICEM'2012), Marseille, France, Sep. 2-5, 2012.

20. Bracikowski, N., M. Hecquet, P. Brochet, and S. V. Shirinskii, "Multiphysics modeling of a permanent magnet synchronous machine by using lumped models," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2426-2437, 2012.
doi:10.1109/TIE.2011.2169640

21. Holzapfel, C., "Selected aspects of the electrical behavior in sliding electrical contacts," Proc. IEEE 57th Holm Conference on Electrical Contacts, 1-9, Sep. 2011.

22. Liu, K., Z. Q. Zhu, Q. Zhang, and J. Zhang, "Influence of non ideal voltage measurement on parameter estimation in permanent-magnet synchronous machines," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2438-3447, 2012.
doi:10.1109/TIE.2011.2162214

23. Fu, W. N. and S. L. Ho, "Extension of the concept of windings in magnetic field-electric circuit coupled finite-element method," IEEE Trans. Magn., Vol. 46, No. 6, 2119-2123, 2010.
doi:10.1109/TMAG.2010.2041433

24. Liu, R., Y. Zhang, M. Hu, and D. Yan, "Field circuit coupled time stepping finite element analysis on permanent magnet brushless DC motors," Proc. ICEMS 2005, Vol. 3, 2105-2109, 2005.

25. Wang, X. and D. Xie, "Analysis of induction motor using field-circuit coupled timeperiodic finite element method taking into account of hysteresis," IEEE Trans. Magn., Vol. 45, No. 3, 1740-1743, 2009.
doi:10.1109/TMAG.2009.2012802

26. Pusca, R., R. Romary, V. Fireteanu, and A. Ceban, "Finite element analysis and experimental study of the near-magnetic field for detection of rotor faults in induction motors," Progress In Electromagnetics Research B, Vol. 50, 37-59, 2013.
doi:10.2528/PIERB13021203

27. Akbari, H., "A modified model of squirrel cage induction machine under general rotor misalignment fault," Progress In Electromagnetics Research B, Vol. 54, 185-201, 2013.
doi:10.2528/PIERB13071804

28. Konwar, R. S., K. Kalita, A. Banerjee, and W. K. S. Khoo, "Electromagnetic analysis of a bridge configured winding cage induction machine using finite element method," Progress In Electromagnetics Research B, Vol. 48, 347-373, 2013.
doi:10.2528/PIERB12112205

29. Lesniewska, E. and R. Rajchert, "3D field-circuit analysis of measurement properties of current transformers with axially and radially connected cores made of different magnetic materials," Progress In Electromagnetics Research M, Vol. 28, 1-13, 2013.

30. Kurihara, K. and S. Sakamoto, "Steady-state and transient performance analysis for universal motors with appropriate turns ratio of lead coils to lag coils," IEEE Trans. Magn., Vol. 44, No. 6, 1506-1509, 2008.
doi:10.1109/TMAG.2007.916406

31. Davat, B., R. Ren, and M. Lajoie-Mazenc, "The movement in field modeling," IEEE Trans. Magn., Vol. 21, No. 6, 2296-2298, 1985.
doi:10.1109/TMAG.1985.1064185

32. Sadowski, N., Y. Lefevre, M. Lajoie-Mazenc, and . Cros, "Finite element torque calculation in electrical machines while considering the movement," IEEE Trans. Magn., Vol. 28, No. 2, 1410-1413, 1992.
doi:10.1109/20.123957