1. Watts, C. M., X. L. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012. Google Scholar
2. Kraemer, D., et al. "High-performance °at-panel solar thermoelectric generators with high thermal concentration," Nat. Mater., Vol. 10, 532-538, 2011.
doi:10.1038/nmat3013 Google Scholar
3. Rephaeli, E. and S. H. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Opt. Express, Vol. 17, 15145-15159, 2009.
doi:10.1364/OE.17.015145 Google Scholar
4. Teperik, T. V., et al. "Omnidirectional absorption in nanostructured metal surfaces," Nat. Photon., Vol. 2, 299-301, 2008.
doi:10.1038/nphoton.2008.76 Google Scholar
5. Bonod, N., G. Tayeb, D. Maystre, S. Enoch, and E. Popov, "Total absorption of light by lamellar metallic strips," Opt. Express, Vol. 16, 15431-15438, 2008.
doi:10.1364/OE.16.015431 Google Scholar
6. Kravets, V. G., F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B, Vol. 78, 205405, 2008.
doi:10.1103/PhysRevB.78.205405 Google Scholar
7. Hibbins, A. P., et al. "Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure," Phys. Rev. B, Vol. 74, 073408, 2006.
doi:10.1103/PhysRevB.74.073408 Google Scholar
8. Le Perchec, J., P. Quemerais, A. Barbara, and T. Lopez-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett., Vol. 100, 066408, 2008.
doi:10.1103/PhysRevLett.100.066408 Google Scholar
9. White, J. S., et al. "Extraordinary optical absorption through subwavelength slits," Opt. Lett., Vol. 34, 686-688, 2009.
doi:10.1364/OL.34.000686 Google Scholar
10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
11. Tao, H., et al. "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181 Google Scholar
12. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403 Google Scholar
13. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033 Google Scholar
14. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.
doi:10.1364/JOSAB.27.000498 Google Scholar
15. Liu, X. L., et al. "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, 045901, 2011.
doi:10.1103/PhysRevLett.107.045901 Google Scholar
16. Cui, Y. X., et al. "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.
doi:10.1063/1.3672002 Google Scholar
17. Huang, L., et al. "Experimental demonstration of terahertz metamaterial absorbers with a broad and °at high absorption band," Opt. Lett., Vol. 37, 154-156, 2012.
doi:10.1364/OL.37.000154 Google Scholar
18. Aydin, K., V. Ferry, R. M. Briggis, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.
doi:10.1038/ncomms1528 Google Scholar
19. Kravets, V. G., S. Neubeck, and A. N. Grigorenko, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B, Vol. 81, 165401, 2010.
doi:10.1103/PhysRevB.81.165401 Google Scholar
20. Hedayati, M. K., et al. "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410-5414, 2011.
doi:10.1002/adma.201102646 Google Scholar
21. Rephaeli, E. and S. H. Fan, "Tungsten black absorber for solar light with wide angular operation range," Appl. Phys. Lett., Vol. 92, 211107, 2008.
doi:10.1063/1.2936997 Google Scholar
22. S¿ndergaard, T., et al. "Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves," Nat. Commun., Vol. 3, 969, 2012.
doi:10.1038/ncomms1976 Google Scholar
23. Cui, Y. X., et al. "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
doi:10.1021/nl204118h Google Scholar
24. Ding, F., Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.
doi:10.1063/1.3692178 Google Scholar
25. Elser, J., R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett.,, Vol. 89, 261102, 2006.
doi:10.1063/1.2422893 Google Scholar
26. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1998.
27. Born, M. and E. Wolf, Principle of Optics, 6th Ed., Macmillan, New York, 1964.
28. He, J. L. and S. L. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wirel. Compon. Lett., Vol. 16, 96-98, 2006.
doi:10.1109/LMWC.2005.863190 Google Scholar
29. He, S. L., Y. R. He, and Y. Jin, "Revealing the truth about `trapped rainbow' storage of light in metamaterials," Sci. Rep., Vol. 2, 583, 2012. Google Scholar