1. Ripka, P. and M. Janosek, "Advances in magnetic field sensors," IEEE Sens. J., Vol. 10, No. 6, 1108-1116, 2010. Google Scholar
2. Kurs, A., A. Karalis, R. Mo®att, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007. Google Scholar
3. Brown, M. A. and R. C. Semelka, MRI: Basic Principles and Applications, Wiley-Blackwell, 2010.
4. Veiseh, O., J. W. Gunn, and M. Zhang, "Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging," Advanced Drug Delivery Reviews, Vol. 62, No. 3, 284-304, 2010. Google Scholar
5. Dobson, J., "Magnetic micro- and nano-particle-based targeting for drug and gene delivery," Nanomedicine, Vol. 1, No. 1, 31-37, 2006. Google Scholar
6. National High Magnetic Field Laboratory, http://www.magnet.fsu.deu/usershub/scientificdivisions/dcfield/facilities.html, . Google Scholar
7. Iwasa, Y., "Hybrid magnets: A magnet engineer's experience and a proposal for the next generation of hybrids," Physica B, Vol. 216, No. 3-4, 1996. Google Scholar
8. Kiyoshi, T., S. Choi, S. Matsumoto, T. Asano, and D. Uglietti, "Magnetic flux concentrator using Gd-Ba-Cu-O bulk superconductors," IEEE Transactions on Applied Superconductivity, Vol. 19, No. 3, 2174-2177, 2009. Google Scholar
9. Zhang, Z. Y., S. Choi, S. Matsumoto, R. Teranshi, G. Giunchi, A. F. Albisetti, and T. Kiyoshi, "Magnetic lenses using different MgB2 bulk superconductors," Supercond. Sci. Technol., Vol. 25, No. 2, 025009, 2012. Google Scholar
10. Leonhardt, U. and T. G. Philbin, Geometry and Light: Science of Invisibility, Dover, 2010.
11. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006. Google Scholar
12. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000. Google Scholar
13. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006. Google Scholar
14. Yang, F., Z. L. Mei, T. Y. Jin, and T. J. Cui, "DC electric invisibility cloak," Physical Review Letters, Vol. 109, 053902, 2012. Google Scholar
15. Gomory, F., M. Solovyov, J. ·Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, No. 6075, 1466-1468, 2012. Google Scholar
16. Narayana, S. and Y. Sato, "DC magnetic cloak," Advanced Materials, Vol. 24, No. 1, 71-74, 2012. Google Scholar
17. Navau, C., J. Prat-Camps, and A. Sanchez, "Magnetic energy harvesting and concentration at a distance by transformation optics," Physical Review Letters, Vol. 109, 263903, 2012. Google Scholar
18. Sun, F. and S. He, "Create a uniform static magnetic field over 50T in a large free space region," Progress In Electromagnetics Research, Vol. 137, 149-157, 2013. Google Scholar
19. Sun, F. and S. He, "Static magnetic field concentration and enhancement using magnetic materials with positive permeability," Progress In Electromagnetics Research, Vol. 142, 579-590, 2013. Google Scholar
20. Sun, F. and S. He, "DC magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials of positive permeability," Progress In Electromagnetics Research, Vol. 142, 683-699, 2013. Google Scholar
21. Prat-Camps, J., C. Navau, and A. Sanchez, "Experimental realization of magnetic energy concentration and transmission at distance by metamaterials,", arXiv: 1308.5878, 2013. Google Scholar
22. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloak and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-fundamentals and Applications, Vol. 6, 87-95, 2008. Google Scholar
23. Li, W., J. Guan, and W. Wang, "Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio," J. Phys. D: Appl. Phys., Vol. 44, 125401, 2011. Google Scholar
24. The Finite Element Simulation is Conducted by Using Commercial Software COMSOL Multiphysics, http://www.comsol.com, . Google Scholar
25. Rupich, M. W., X. Li, S. Sathyamurthy, C. L. H. Thieme, K. DeMoranville, J. Gannon, and S. Fleshler, "Second generation wire development at AMSC," IEEE Transactions on Applied Superconductivity, Vol. 23, No. 3, 6601205, 2013. Google Scholar