Vol. 149
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-11-03
Electromagnetic Analysis of an Aperture Modified TEM Cell Including an ITO Layer for Real-Time Observation of Biological Cells Exposed to Microwaves
By
Progress In Electromagnetics Research, Vol. 149, 193-204, 2014
Abstract
We propose to analyze the aperture and ITO layer presence of a modified transverse electromagnetic (TEM) cell. This TEM cell can be used to study the potential effects of microwave electromagnetic fields on biological cells. This modified delivery device allows realtime observation of biological cells during exposure. Microscopic observation is achieved through an aperture in the lower wall of the TEM cell that is sealed with a 700-nm film of the transparent conducting material Indium tin oxide (ITO). To determine the device efficiency, numerical and experimental electromagnetic dosimetry was conducted. For assessing the effect of the aperture on the specific absorption rate (SAR) in the exposed sample, a plastic Petri dish containing cell culture medium, full-wave 3-D electromagnetic simulations and temperature measurements were performed. For 1-W input power, the SAR values obtained at 1.8 GHz in the sample exposed in the TEM cell with the sealed or non-sealed aperture of 20-mm diameter were 1.1 W/kg and 23.6 W/kg, respectively. An excellent homogeneity of the SAR distribution was achieved when the aperture was sealed with the ITO layer. The performance of the delivery system was confirmed by microwave exposure and simultaneous observation of living cells.
Citation
Malak Soueid Sophie Kohler Lynn Carr Sylvia M. Bardet Rodney P. O'Connor Philippe Leveque Delia Arnaud-Cormos , "Electromagnetic Analysis of an Aperture Modified TEM Cell Including an ITO Layer for Real-Time Observation of Biological Cells Exposed to Microwaves," Progress In Electromagnetics Research, Vol. 149, 193-204, 2014.
doi:10.2528/PIER14053108
http://www.jpier.org/PIER/pier.php?paper=14053108
References

1. Lin, J. C., "Studies on microwaves in medicine and biology: From snails to humans," Bioelectromagnetics, Vol. 25, 146-159, 2004.
doi:10.1002/bem.20004

2. Valberg, P. A., T. E. van Deventer, and M. H. Repacholi, "Workgroup report: Base stations and wireless networks-radiofrequency (RF) exposures and health consequences," Environmental Health Perspectives, Vol. 115, 416-424, Mar. 2007.
doi:10.1289/ehp.9633

3. Mason, W. T., Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-time Analysis, 2nd Edition, Academic Press, New York, 1999.

4. Paffi, A., et al., "Considerations for developing an RF exposure system: A review for in vitro biological experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 2702-2714, Oct. 2010.
doi:10.1109/TMTT.2010.2065351

5. Paffi, A., et al., "Microwave exposure systems for in vivo biological experiments: A systematic review," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 1980-1983, 2013.
doi:10.1109/TMTT.2013.2246183

6. Balzano, Q., C. K. Chou, R. Cicchetti, A. Faraone, and R. Y. S. Tay, "An efficient RF exposure system with precise whole-body average SAR determination for in vivo animal studies at 900 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 2040-2049, 2000.
doi:10.1109/22.884193

7. Koester, P., J. Sakowski, W. Baumann, H.-W. Glock, and J. Gimsa, "A new exposure system for the in vitro detection of GHz field effects on neuronal networks," Bioelectrochemistry, Vol. 70, 104-114, 2007.
doi:10.1016/j.bioelechem.2006.03.039

8. Merla, C., N. Ticaud, D. Arnaud-Cormos, B. Veyret, and P. Leveque, "Real-time RF exposure setup based on a multiple electrode array (MEA) for electrophysiological recording of neuronal networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 755-762, Mar. 2011.
doi:10.1109/TMTT.2010.2100404

9. Moretti, D., et al., "In-vitro exposure of neuronal networks to the GSM-1800 signal," Bioelectromagnetics, Vol. 34, 571-578, Dec. 2013.
doi:10.1002/bem.21805

10. Liberti, M., F. Apollonio, A. Paffi, M. Pellegrino, and G. D’Inzeo, "A coplanar-waveguide system for cells exposure during electrophysiological recordings," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 2521-2528, 2004.
doi:10.1109/TMTT.2004.837155

11. Paffi, A., et al., "A realtime exposure system for electrophysiological recording in brain slices," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 2463-2471, 2007.
doi:10.1109/TMTT.2007.908657

12. Paffi, A., et al., "A TEM cell system for in vivo exposure at 2.45GHz," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1099-1101, 2012.
doi:10.1109/EuCAP.2012.6206470

13. Crawford, M. L., "Generation of standard EM fields using TEM transmission cells," IEEE Transactions on Electromagnetic Compatibility, Vol. 16, 189-195, 1974.
doi:10.1109/TEMC.1974.303364

14. O’Connor, R. P., S. D. Madison, P. Leveque, H. L. Roderick, and M. D. Bootman, "Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons," Plos One, Vol. 5, 16, Jul. 2010.

15. Zhao, J. X., H. M. Lu, and J. Deng, "Dosimetry and temperature evaluations of a 1800MHz TEM cell for in vitro exposure with standing waves," Progress In Electromagnetics Research, Vol. 124, 487-510, 2012.
doi:10.2528/PIER11091204

16. Iftode, C. and S. Miclaus, "Design and validation of a TEM cell used for radiofrequency dosimetric studies," Progress In Electromagnetics Research, Vol. 132, 369-388, 2012.
doi:10.2528/PIER12081306

17. Kohler, S., R. P. O’Connor, V. Thi Dan Thao, P. Leveque, and D. Arnaud-Cormos, "Experimental microdosimetry techniques for biological cells exposed to nanosecond pulsed electric fields using microfluorimetry," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 2015-2022, 2013.
doi:10.1109/TMTT.2013.2252917

18. Yasin, T., R. Baktur, and C. Furse, "A comparative study on two types of transparent patch antennas," 2011 XXXth URSI General Assembly and Scientific Symposium,, 1-4, 2011.
doi:10.1109/URSIGASS.2011.6050441

19. Sato, H., H. Fujikake, T. Murashige, H. Kikuchi, T. Kurita, and F. Sato, "A4-sized flexible ferroelectric liquid-crystal displays with micro color filters," Journal of the Society for Information Display, Vol. 13, 461-468, Jun. 2005.
doi:10.1889/1.1973983

20. Beaupre, S., J. Dumas, and M. Leclerc, "Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers," Chemistry of Materials, Vol. 18, 4011-4018, Aug. 2006.
doi:10.1021/cm060407o

21. Zhao, L., Z. B. Zhou, H. Peng, and R. Q. Cui, "Indium tin oxide thin films by bias magnetron RF sputtering for heterojunction solar cells application," Applied Surface Science, Vol. 252, 385-392, Oct. 2005.
doi:10.1016/j.apsusc.2005.01.033

22. Bourry, M., M. Sarret, and M. Drissi, "Novel ITO alloy for microwave and optical applications," 48th Midwest Symposium on Circuits and Systems, Vol. 1, 615-618, 2005.

23. Lee, C.-T., C.-M. Lee, and C.-H. Luo, "The transparent monopole antenna for WCDMA and WLAN," IEEE Annual Wireless and Microwave Technology Conference, WAMICON’ 06, 1-3, 2006.

24. Pakorn, P., S. Porntheeraphat, A. Klamchuen, and J. Nukeaw, "ITO thin films prepared by gas-timing RF magnetron sputtering for transparent flexible antenna," 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS’ 07, 647-650, 2007.

25. Colombel, F., X. Castel, M. Himdi, G. Legeay, S. Vigneron, and E. M. Cruz, "Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna," IET Science Measurement & Technology, Vol. 3, 229-234, May 2009.
doi:10.1049/iet-smt:20080060

26. Neveu, N., M. Garcia, J. Casana, R. Dettloff, D. R. Jackson, and C. Ji, "Transparent microstrip antennas for CubeSat applications," 2013 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), 1-4, 2013.
doi:10.1109/WiSEE.2013.6737542

27. Moisescu, M. G., P. Leveque, J.-R. Bertrand, E. Kovacs, and L. M. Mir, "Microscopic observation of living cells during their exposure to modulated electromagnetic fields," 19th Biannual International Symposium on Bioelectrochemistry and Bioenergetics, 9-15, Toulouse, France, 2007.

28. Kohler, S., N. Ticaud, M.-M. Iordache, M. G. Moisescu, T. Savopol, P. Leveque, and D. Arnaud-Cormos, "Setup for simultaneous microwave heating and real-time spectrofluorometric measurements in biological systems," Progress In Electromagnetics Research, Vol. 145, 229-240, 2014.
doi:10.2528/PIER13110703

29. Kohler, S., et al., "Simultaneous high intensity ultrashort pulsed electric field and temperature measurements using a unique electrooptic probe," IEEE Microwave and Wireless Components Letters, Vol. 22, 153-155, 2012.
doi:10.1109/LMWC.2012.2185840

30. Kohler, S., T. D. T. Vu, P. T. Vernier, P. Leveque, and D. Arnaud-Cormos, "Characterization of a TEM cell-based setup for the exposure of biological cell suspensions to high-intensity nanosecond pulsed electric fields (nsPEFs)," 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, Montr´eal, Canada, 2012.

31. Granqvist, C. G. and A. Hultaker, "Transparent and conducting ITO films: New developments and applications," Thin Solid Films, Vol. 411, 1-5, May 2002.
doi:10.1016/S0040-6090(02)00163-3

32. Yasin, T., R. Baktur, and C. Furse, "A study on the efficiency of transparent patch antennas designed from conductive oxide films," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 3078-3080, 2011.

33. Kuster, N. and F. Schonborn, "Recommended minimal requirements and development guidelines for exposure setups of bio-experiments addressing the health risk concern of wireless communications," Bioelectromagnetics, Vol. 21, 508-514, 2000.
doi:10.1002/1521-186X(200010)21:7<508::AID-BEM4>3.0.CO;2-F

34. Yang, H. and S. Lee, "A variational calculation for higher order mode cutoff frequencies of a symmetrical strip line by conformal mapping," Microwave and Optical Technology Letters, Vol. 32, 449-452, Mar. 2002.
doi:10.1002/mop.10206

35. Tsitsos, S., A. A. P. Gibson, and A. H. I. McCormick, "Higher-order modes in coupled striplines — Prediction and measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2071-2077, Nov. 1994.
doi:10.1109/22.330121