1. Hou, W. and S. B. Cronin, "A review of surface plasmon resonance-enhanced photocatalysis," Advanced Functional Materials, Vol. 23, No. 13, 1612-1619, 2013.
doi:10.1002/adfm.201202148 Google Scholar
2. Anker, J. N., et al. "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162 Google Scholar
3. Qian, J., et al. "Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging," Biomaterials, Vol. 32, No. 6, 1601-1610, 2011.
doi:10.1016/j.biomaterials.2010.10.058 Google Scholar
4. Till, , J. H., et al. "Direct electrical evidence of plasmonic near-field enhancement in small molecule organic solar cells," The Journal of Physical Chemistry C, Vol. 118, No. 28, 15128-15135, 2014.
doi:10.1021/jp5025087 Google Scholar
5. Zhang, Y., et al. "Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging," Angewandte Chemie International Edition, Vol. 52, No. 4, 1148-1151, 2013.
doi:10.1002/anie.201207909 Google Scholar
6. Aherne, D., et al. "Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature," Advanced Functional Materials, Vol. 18, No. 14, 2005-2016, 2008.
doi:10.1002/adfm.200800233 Google Scholar
7. Aherne, D., et al. "From Ag nanoprisms to triangular AuAg nanoboxes," Advanced Functional Materials, Vol. 20, No. 8, 1329-1338, 2010.
doi:10.1002/adfm.200902030 Google Scholar
8. Liu, X. W., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER12041908 Google Scholar
9. Bar-Ilan, O., et al. "Toxicity assessments of Au and Ag nanoparticles in zebrafish embryos," SMALL, Vol. 5, No. 16, 1897-1910, 2009.
doi:10.1002/smll.200801716 Google Scholar
10. Lee, , K. J., et al. "In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos," ACS Nano, Vol. 1, No. 2, 133-143, 2007.
doi:10.1021/nn700048y Google Scholar
11. Wang, Y. L., et al. "Biocompatibility and biodistribution of surface-enhanced raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging," ACS Nano, Vol. 4, No. 7, 4039-4053, 2010.
doi:10.1021/nn100351h Google Scholar
12. Asharani, P. V., et al. "Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos," Nanotoxicology, Vol. 5, No. 1, 43-54, 2011.
doi:10.3109/17435390.2010.489207 Google Scholar
13. Li, K. H., et al. "Nonlinear optical properties of Au/Ag alloyed nanoboxes and their applications in both in vitro and in vivo bioimaging under long-wavelength femtosecond laser excitation," RSC Advances, Vol. 5, No. 4, 2851-2856, 2015.
doi:10.1039/C4RA10752G Google Scholar
14. George, S., et al. "Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos," ACS Nano, Vol. 6, No. 5, 3745-3759, 2012.
doi:10.1021/nn204671v Google Scholar
15. Pan, Y., et al. "High-sensitivity real-time analysis of nanoparticle toxicity in green fluorescent protein-expressing zebrafish," SMALL, Vol. 9, No. 6, 863-869, 2013.
doi:10.1002/smll.201201173 Google Scholar
16. Fenaroli, F., et al. "Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: Direct visualization and treatment," ACS Nano, Vol. 8, No. 7, 7014-7026, 2014.
doi:10.1021/nn5019126 Google Scholar
17. Kimmel, C. B., et al. "Stages of embryonic development of the zebrafish," Developmental Dynamics, Vol. 203, No. 3, 253-310, 1995.
doi:10.1002/aja.1002030302 Google Scholar
18. Tong, L. and J. X. Chen, "Label-free imaging through nonlinear optical signals," Materials Today, Vol. 14, No. 6, 264-273, 2011.
doi:10.1016/S1369-7021(11)70141-9 Google Scholar
19. Tong, L., et al. "Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity," Angewandte Chemie International Edition, Vol. 49, No. 20, 3485-3488, 2010.
doi:10.1002/anie.201000440 Google Scholar
20. Horton, N. G., et al. "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nature Photonics, Vol. 7, No. 3, 205-209, 2013.
doi:10.1038/nphoton.2012.336 Google Scholar