1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, Vol. 155, 459-512, 1865.
doi:10.1098/rstl.1865.0008 Google Scholar
2. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907 Google Scholar
3. Pendry, J. B., "Perfect cylindrical lenses," Opt. Express, Vol. 11, 755, 2003.
doi:10.1364/OE.11.000755 Google Scholar
4. Yan, M., W. Yan, and M. Qiu, "Cylindrical superlens by a coordinate transformation," Phys. Rev. B, Vol. 78, 125113, 2008.
doi:10.1103/PhysRevB.78.125113 Google Scholar
5. Kundtz, N. and D. R. Smith, "Extreme-angle broadband metamaterial lens," Nat. Mat., Vol. 9, 129-132, 2010.
doi:10.1038/nmat2610 Google Scholar
6. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nat. Comm., Vol. 1, 124, 2010.
doi:10.1038/ncomms1126 Google Scholar
7. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 2006.
doi:10.1088/1367-2630/8/8/124 Google Scholar
8. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3 Google Scholar
9. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, No. 9704, 2006. Google Scholar
10. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.
doi:10.1126/science.1126493 Google Scholar
11. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621 Google Scholar
12. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977, 2006.
doi:10.1126/science.1133628 Google Scholar
13. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon., Vol. 1, 224, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
14. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903 Google Scholar
15. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, 113903, 2007.
doi:10.1103/PhysRevLett.99.113903 Google Scholar
16. Yan, M., Z. Ruan, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Lett., Vol. 99, 233901, 2007.
doi:10.1103/PhysRevLett.99.233901 Google Scholar
17. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett, Vol. 90, 241105, 2007.
doi:10.1063/1.2748302 Google Scholar
18. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Phys. Rev. Lett., Vol. 102, 183903, 2009.
doi:10.1103/PhysRevLett.102.183903 Google Scholar
19. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photo. Nano. Fund. Appl., Vol. 6, 87, 2008.
doi:10.1016/j.photonics.2007.07.013 Google Scholar
20. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett., Vol. 92, 264101, 2008.
doi:10.1063/1.2951485 Google Scholar
21. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Appl. Phys. Lett., Vol. 91, 253509, 2007.
doi:10.1063/1.2826283 Google Scholar
22. Schurig, D., J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express, Vol. 15, 14772, 2007.
doi:10.1364/OE.15.014772 Google Scholar
23. Kwon, D.-H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys., Vol. 10, 115023, 2008.
doi:10.1088/1367-2630/10/11/115023 Google Scholar
24. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903 Google Scholar
25. Moon, P. and D. E. Spencer, Field Thoery Handbook, Springer-Verlag, Berlin, 1961.
doi:10.1007/978-3-642-53060-9
26. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901 Google Scholar
27. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366, 2009.
doi:10.1126/science.1166949 Google Scholar
28. Jiang, W. X., T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, "Invisibility cloak without singularity," Appl. Phys. Lett., Vol. 93, 194102, 2008.
doi:10.1063/1.3026532 Google Scholar
29. Yang, F., Z. L. Mei, T. Y. Jin, and T. J. Cui, "DC electric invisibility cloak," Phys. Rev. Lett., Vol. 109, 053902, 2012.
doi:10.1103/PhysRevLett.109.053902 Google Scholar
30. Jiang, W. X., C. Y. Luo, Z. L. Mei, and T. J. Cui, "An ultrathin but nearly perfect direct current electric cloak," Appl. Phys. Lett., Vol. 102, No. 014102, 2013. Google Scholar
31. Wang, W., L. Lin, J. Ma, C. Wang, J. Cui, and C. Du, "Electromagnetic concentrators with reduced material parameters based on coordinate transformation," Opt. Express, Vol. 16, 11431, 2008.
doi:10.1364/OE.16.011431 Google Scholar
32. Piegl, L. and W. Tiller, The NURBS Book, 2nd Edition, Springer-Verlag, New York, 1996.
33. Luo, Y., H. Chen, J. Zhang, L. Ran, and J. Kong, "Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B, Vol. 77, 125127, 2008.
doi:10.1103/PhysRevB.77.125127 Google Scholar
34. Jiang, W. X., C. Y. Luo, H. F. Ma, Z. L. Mei, and T. J. Cui, "Enhancement of current density by dc electric concentrator," Scientific Reports, Vol. 2, 956, 2012. Google Scholar
35. Ma, H., S. Qu, Z. Xu, and J. Wang, "Wave-shape-keeping media," Opt. Lett., Vol. 34, 127-129, 2009.
doi:10.1364/OL.34.000127 Google Scholar
36. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, 3rd Edition, McGraw-Hill, New York, 2002.
37. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation," Appl. Phys. Lett., Vol. 92, 261903, 2008.
doi:10.1063/1.2953447 Google Scholar
38. Jiang, W. X., T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, "Layered high-gain lens antennas via discrete optical transformation," Appl. Phys. Lett., Vol. 93, 221906, 2008.
doi:10.1063/1.3040307 Google Scholar
39. Zhang, J. J., Y. Luo, S. Xi, H. Chen, L.-X. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress In Electromagnetics Research, Vol. 81, 437-446, 2008.
doi:10.2528/PIER08011002 Google Scholar
40. Kundtz, N., D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith, "Optical source transformations," Opt. Express, Vol. 16, 21215, 2008.
doi:10.1364/OE.16.021215 Google Scholar
41. Zhang, J., Y. Luo, H. Chen, and B.-I. Wu, "Manipulating the directivity of antennas with metamaterial," Opt. Express, Vol. 16, 10962, 2008.
doi:10.1364/OE.16.010962 Google Scholar
42. Ma, H., S. Qu, Z. Xu, and J. Wang, "General method for designing wave shape transformers," Opt. Express, Vol. 16, 22072-22082, 2008.
doi:10.1364/OE.16.022072 Google Scholar
43. Jiang, Z. H., M. D. Gregory, and D. H. Werner, "Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission," Phys. Rev. B, Vol. 84, 165111, 2009. Google Scholar
44. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photon., Vol. 3, 461, 2009.
doi:10.1038/nphoton.2009.117 Google Scholar
45. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials, Vol. 8, 568, 2009.
doi:10.1038/nmat2461 Google Scholar
46. Ma, H. F., W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, "Compact-sized and broadband carpet cloak and free-space cloak," Opt. Express, Vol. 17, 19947, 2009.
doi:10.1364/OE.17.019947 Google Scholar
47. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Comm., Vol. 1, 21, 2010. Google Scholar
48. Chen, X., H. F. Ma, X. Y. Zou, W. X. Jiang, and T. J. Cui, "Three-dimensional broadband and high-directivity lens antenna made of metamaterials," J. Appl. Phys., Vol. 110, 044904, 2011.
doi:10.1063/1.3622596 Google Scholar
49. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge , 1999.
doi:10.1017/CBO9781139644181
50. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
51. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
52. Kildishev, A. V. and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett., Vol. 33, 43, 2008.
doi:10.1364/OL.33.000043 Google Scholar
53. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 035122, 2008.
doi:10.1103/PhysRevB.77.035122 Google Scholar
54. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534, 2005.
doi:10.1126/science.1108759 Google Scholar
55. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.
doi:10.1126/science.1131025 Google Scholar
56. Zhang, X. and Z. W. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater., Vol. 7, 435, 2008.
doi:10.1038/nmat2141 Google Scholar
57. Liu, Z. W., S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far field optical superlens," Nano Lett., Vol. 7, 403, 2007.
doi:10.1021/nl062635n Google Scholar
58. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
doi:10.1364/OE.14.008247 Google Scholar
59. Salandrino, A. and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B, Vol. 74, 075103, 2006.
doi:10.1103/PhysRevB.74.075103 Google Scholar
60. Smolyaninov, I. I., Y. J. Huang, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science, Vol. 315, 1699, 2007.
doi:10.1126/science.1138746 Google Scholar
61. Liu, Z. W., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffractionlimited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368 Google Scholar
62. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat. Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148 Google Scholar
63. Zhang, B. L. and G. Barbastathis, "Dielectric metamaterial magnifiercreating a virtual color image withfar-field subwavelength information," Opt. Express, Vol. 18, 11216, 2010.
doi:10.1364/OE.18.011216 Google Scholar
64. Jiang, W. X., C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, "Broadband all-dielectric magnifying lens for far-field high-resolution imaging," Adv. Mater., Vol. 25, 6963-6968, 2013.
doi:10.1002/adma.201303657 Google Scholar
65. Mansfield, S. M. and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett., Vol. 57, 2615, 1990.
doi:10.1063/1.103828 Google Scholar