1. Baccarelli, P., P. Burghignoli, G. Lovat, and S. Paulotto, "A novel printed leaky-wave ‘bull-eye’ antenna with suppressed surface-wave excitation," Digest 2004 IEEE AP-S Symp. Ant. Prop., Vol. 1, 1078-1081, 2004.
doi:10.1109/APS.2004.1329861 Google Scholar
2. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric EBG structures for reducing surface waves in printed antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3210-3218, Oct. 2005.
doi:10.1109/TAP.2005.856365 Google Scholar
3. Sutinjo, A., M. Okoniewski, and R. H. Johnston, "A holographic antenna approach for surface wave control in microstrip antenna applications," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 675-682, Mar. 2010.
doi:10.1109/TAP.2009.2039316 Google Scholar
4. Podilchak, S. K., Y. M. M. Antar, A. P. Freundorfer, P. Baccarelli, P. Burghignoli, S. Paulotto, and G. Lovat, "Planar antenna for continuous beam scanning and broadside radiation by selective surface wave suppression," Electronics Letters, Vol. 46, No. 9, 613-614, Apr. 2010.
doi:10.1049/el.2010.0074 Google Scholar
5. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of a new annular multi-slits antenna using wave concept iterative process in cylindrical coordinates," Ann. Telecommun., Vol. 66, 383-394, 2011.
doi:10.1007/s12243-010-0225-8 Google Scholar
6. Podilchak, S. K., P. Baccarelli, P. Burghignoli, A. P. Freundorfer, and Y. M. M. Antar, "Optimization of a planar bull-eye leaky-wave antenna fed by a printed surface-wave source," IEEE Antennas Wireless Propag. Lett., Vol. 12, 665-669, 2013.
doi:10.1109/LAWP.2013.2262572 Google Scholar
7. Ettorre, M. and A. Grbic, "Generation of propagating Bessel beams using leaky modes," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3605-3613, Aug. 2012.
doi:10.1109/TAP.2012.2201088 Google Scholar
8. Podilchak, S. K., P. Baccarelli, P. Burghignoli, A. P. Freundorfer, and Y. M. M. Antar, "Analysis and design of annular microstrip-based planar periodic leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2978-2991, Jun. 2014.
doi:10.1109/TAP.2014.2314735 Google Scholar
9. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, Aug. 2002.
doi:10.1126/science.1071895 Google Scholar
10. Jackson, D. R., A. A. Oliner, Y. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: Leaky-wave model and open stopband effect," Radio Sci., Vol. 40, 1-12, 2005.
doi:10.1029/2004RS003226 Google Scholar
11. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Materials, Vol. 9, 193-204, Mar. 2010.
doi:10.1038/nmat2630 Google Scholar
12. Fu, Y. and X. Zhou, "Plasmonic lenses: A review," Plasmonics, Vol. 5, No. 3, 287-310, Jun. 2010.
doi:10.1007/s11468-010-9144-9 Google Scholar
13. Bao, Q. and K. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, No. 5, 3677-3694, 2012.
doi:10.1021/nn300989g Google Scholar
14. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A Google Scholar
15. Sun, Z., T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano, Vol. 4, No. 2, 803-810, 2010.
doi:10.1021/nn901703e Google Scholar
16. Bonaccorso, F., Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics, Vol. 4, No. 9, 611-622, 2010.
doi:10.1038/nphoton.2010.186 Google Scholar
17. Berry, C. W., N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nat. Commun., Vol. 4, 1622, 2013.
doi:10.1038/ncomms2638 Google Scholar
18. Politano, A., "Low-energy collective electronic mode at a noble metal interface," Plasmonics, Vol. 8, No. 2, 357-360, 2013.
doi:10.1007/s11468-012-9397-6 Google Scholar
19. Baccarelli, P., P. Burghignoli, D. Comite, D. Di Ruscio, A. Galli, P. Lampariello, and D. R. Jackson, "Annular reconfigurable metasurface for omnidirectional dual-pol leaky-wave antennas," 7th Europ. Conf. Antennas Prop. (EuCAP), Gothenburg, Sweden, Apr. 8-11, 2013. Google Scholar
20. Guo, Y. J., A. Paez, R. A. Sadeghzadeh, and S. K. Barton, "A circular patch antenna for radio LANs," IEEE Trans. Antennas Propag., Vol. 45, No. 1, 177-178, Jan. 1997.
doi:10.1109/8.554256 Google Scholar
21. McEwan, N. J., R. A. Abd-Alhameed, E. M. Ibrahim, P. S. Excell, and J. G. Gardiner, "A new design of horizontally polarized and dual-polarized uniplanar conical beam antennas for HIPERLAN," IEEE Trans. Antennas Propag., Vol. 51, No. 2, 229-237, Feb. 2003.
doi:10.1109/TAP.2003.809058 Google Scholar
22. Bregains, J. C., G. Franceschetti, A. G. Roederer, and F. Ares, "New toroidal beam antennas for WLAN communications," IEEE Trans. Antennas Propag., Vol. 55, 389-398, Feb. 2007.
doi:10.1109/TAP.2006.889796 Google Scholar
23. Zhou, D., R. A. Abd-Alhameed, C. H. See, N. J. McEwan, and P. S. Excell, "New circularly-polarized conical-beam microstrip patch antenna array for short-range communication systems," Microw. Opt. Technol. Lett., Vol. 51, 78-81, Jan. 2009.
doi:10.1002/mop.23956 Google Scholar
24. Batchelor, J. C. and R. J. Langley, "Microstrip ring antennas operating at higher order modes for mobile communications," IEE Proc. Microw. Antennas Propag., Vol. 142, No. 2, 151-155, Apr. 1995.
doi:10.1049/ip-map:19951826 Google Scholar
25. Ares, F., G. Franceschetti, J. Mosig, S. Vaccaro, J. Vassallo, and E. Noreno, "Satellite communication with moving vehicles on Earth: Two prototype circular array antennas," Microw. Opt. Technol. Lett., Vol. 39, No. 1, 14-16, Oct. 2003.
doi:10.1002/mop.11112 Google Scholar
26. Son, S. H., S. I. Jeon, C. J. Kim, and W. B. Hwang, "GA-based design of multi-ring arrays with omnidirectional conical beam pattern," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1527-1534, May 2010.
doi:10.1109/TAP.2010.2044326 Google Scholar
27. Jackson, D. R. and A. A. Oliner, "Leaky-wave antennas," Modern Antenna Handbook, C. A. Balanis (Ed.), Ch. 7, Wiley, New York, 2008. Google Scholar
28. Jackson, D. R. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 33, No. 9, 976-987, Sep. 1985.
doi:10.1109/TAP.1985.1143709 Google Scholar
29. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828 Google Scholar
30. Zhao, T., D. R. Jackson, J. T. Williams, H.-Y. D. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas — Part I: Metal patch design; Part II: Slot design," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3505-3524, Nov. 2005.
doi:10.1109/TAP.2005.858579 Google Scholar
31. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702 Google Scholar
32. Sievenpiper, D., "Forward and backward leaky-wave radiation with large effective aperture from an electronically tunable textured surface," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 236-247, Jun. 2005.
doi:10.1109/TAP.2004.840516 Google Scholar
33. Patel, A. M. and A. Grbic, "A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2087-2096, Jun. 2011.
doi:10.1109/TAP.2011.2143668 Google Scholar
34. Minatti, G., F. Caminita, M. Casaletti, and S. Maci, "Spiral leaky-wave antennas based on modulated surface impedance," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4436-4444, Dec. 2011.
doi:10.1109/TAP.2011.2165691 Google Scholar
35. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Sec. 4.4.2, Artech House, Norwood, MA, 2003.
36. Luukkonen, O., C. R. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1624-1632, Jun. 2008.
doi:10.1109/TAP.2008.923327 Google Scholar
37. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Trans. Antennas Propag. Mag., Vol. 54, No. 2, 10-35, Apr. 2012.
doi:10.1109/MAP.2012.6230714 Google Scholar
38. Salem, M. A., K. Achouri, and C. Caloz, "Metasurface synthesis for time-harmonic waves: Exact spectral and spatial methods," Progress In Electromagnetics Research, Vol. 149, 205-216, 2014.
doi:10.2528/PIER14100505 Google Scholar
39. Di Ruscio, D., P. Burghignoli, P. Baccarelli, D. Comite, and A. Galli, "Spectral method of moments for planar structures with azimuthal symmetry," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2317-2322, Apr. 2014.
doi:10.1109/TAP.2014.2302831 Google Scholar
40. Gomez-Tornero, J. L., D. Blanco, E. Rajo-Iglesias, and N. Llombart, "Holographic surface leaky-wave lenses with circularly-polarized focused near-fields — Part I: Concept, design and analysis theory," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3475-3485, Jul. 2013.
doi:10.1109/TAP.2013.2257644 Google Scholar
41. FEKO Suite 6.0, EM Software and Systems, , Technopark, Stellenbosh, 7600, South Africa, 2010; http://www.feko.co.za. Google Scholar
42. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
43. Felsen, L. and N. Marcuvitz, Radiation and Scattering of Waves, Ch. 2, Prentice-Hall, Englewood Cliffs, NJ, 1973.
44. Ostner, H., E. Schmidhammer, J. Detlefsen, and D. R. Jackson, "Radiation from dielectric leaky-wave antennas with circular and rectangular apertures," Electromagn., Vol. 17, No. 5, 505-535, 1997.
doi:10.1080/02726349708908557 Google Scholar
45. Fong, B. H., J. S. Colburn, J. J. Ottusch, J. L. Vischer, and D. F. Sievenpiper, "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, Oct. 2010.
doi:10.1109/TAP.2010.2055812 Google Scholar
46. Paulotto, S., P. Baccarelli, P. Burghignoli, G. Lovat, G. Hanson, and A. B. Yakovlev, "Homogenized Green’s functions for an aperiodic line source over planar densely periodic artificial impedance surfaces," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 7, 1807-1817, Jul. 2010.
doi:10.1109/TMTT.2010.2049917 Google Scholar
47. Dudley, D. G., Mathematical Foundations for Electromagnetic Theory, Wiley-IEEE Press, New York, 1994.
doi:10.1109/9780470545232