1. Pastorino, M., Microwave Imaging, Wiley, 2010.
doi:10.1002/9780470602492
2. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 2012.
3. Aster, R. C., B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Academic Press, 2013.
4. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
5. Devaney, A. J., Mathematical Foundations of Imaging, Tomography and Wavefield Inversion, Cambridge University Press, 2012.
doi:10.1017/CBO9781139047838
6. Aftanas, M., "Through-wall imaging with UWB radar system,", Department of Electronics and Multimedia Communications, Technical University of Kosice, 2009. Google Scholar
7. Takagi, T., J. R. Bowler, Y. Yoshida, and Eds., Electromagnetic Nondestructive Evaluation, IOS Press, 1997.
8. Caorsi, S., A. Massa, and M. Pastorino, "A crack identification microwave procedure based on a genetic algorithm for nondestructive testing," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1812-1820, 2001.
doi:10.1109/8.982464 Google Scholar
9. Zorgati, R., B. Duchene, D. Lesselier, and F. Pons, "Eddy current testing of anomalies in conductive materials. I. Qualitative imaging via diffraction tomography techniques," IEEE Trans. Magn., Vol. 27, No. 6, 4416-4437, 1991.
doi:10.1109/20.278657 Google Scholar
10. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902 Google Scholar
11. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242 Google Scholar
12. Zhang, W., "Two-dimensional microwave tomographic algorithm for radar imaging through multilayered media," Progress In Electromagnetics Research, Vol. 144, 261-270, 2014.
doi:10.2528/PIER13090305 Google Scholar
13. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proc. IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526 Google Scholar
14. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, 1985.
15. Rajan, S. D. and G. V. Frisk, "A comparison between the Born and Rytov approximations for the inverse backscattering," Geophy., Vol. 54, 864-871, 1989.
doi:10.1190/1.1442715 Google Scholar
16. Zhang, Z. Q. and Q. H. Liu, "Two nonlinear inverse methods for electromagnetic induction measurements," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1331-1339, 2001.
doi:10.1109/36.927456 Google Scholar
17. Estatico, C., G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, "A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data," Inverse Problems, Vol. 21, No. 6, S81, 2005.
doi:10.1088/0266-5611/21/6/S07 Google Scholar
18. Wang, Y. M. and W. C. Chew, "An iterative solution of the two-dimensional electromagnetic inverse scattering problem," Int. J. of Imaging Syst. Technol., Vol. 1, 100-108, 1989.
doi:10.1002/ima.1850010111 Google Scholar
19. Desmal, A. and H. Bagci, "Shrinkage-thresholding enhanced Born iterative method for solving 2D inverse electromagnetic scattering problem," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3878-3884, 2014.
doi:10.1109/TAP.2014.2321144 Google Scholar
20. Bagci, H., R. Raich, A. E. Hero, and E. Michielssen, "Sparsity-regularized Born iterations for electromagnetic inverse scattering," Proc. IEEE Int. Symp. Antennas and Propagation, 1-4, 2008. Google Scholar
21. Desmal, A. and H. Bagci, "A preconditioned inexact Newton method for nonlinear sparse electromagnetic imaging," IEEE Geosci. Remote Sens. Lett., Vol. 12, No. 3, 532-536, 2015.
doi:10.1109/LGRS.2014.2349935 Google Scholar
22. Bozza, G. and M. Pastorino, "An inexact Newton-based approach to microwave imaging within the contrast source formulation," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1122-1132, 2009.
doi:10.1109/TAP.2009.2015820 Google Scholar
23. Estatico, C., M. Pastorino, and A. Randazzo, "A novel microwave imaging approach based on regularization in Banach spaces," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3373-3381, 2012.
doi:10.1109/TAP.2012.2196925 Google Scholar
24. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334 Google Scholar
25. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338 Google Scholar
26. Abubakar, A., T. M. Habashy, and P. M. Van den Berg, "Nonlinear inversion of multi-frequency microwave fresnel data using the multiplicative regularized contrast source inversion," Progress In Electromagnetics Research, Vol. 62, 193-201, 2006.
doi:10.2528/PIER06042205 Google Scholar
27. Zakaria, A., I. Jeffrey, and J. LoVetri, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.
doi:10.2528/PIER13080706 Google Scholar
28. Ping, X. W. and T. J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703 Google Scholar
29. Abubakar, P. M., "Contrast source inversion method: State of art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001. Google Scholar
30. Li, Y. and W. Yang, "Image reconstruction by nonlinear Landweber iteration for complicated distributions," Meas. Sci. Technol., Vol. 19, No. 9, 094014, 2008.
doi:10.1088/0957-0233/19/9/094014 Google Scholar
31. Hettlich, F., "The Landweber iteration applied to inverse conductive scattering problems," Inverse Problems, Vol. 14, No. 4, 931-947, 1998.
doi:10.1088/0266-5611/14/4/011 Google Scholar
32. Fornasier, M., Theoretical Foundations and Numerical Methods for Sparse Recovery, Walter de Gruyter, 2010.
doi:10.1515/9783110226157
33. Daubechies, I., M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., Vol. 57, No. 11, 1413-1457, 2004.
doi:10.1002/cpa.20042 Google Scholar
34. Wei, S. J., X. L. Zhang, J. Shi, and K. F. Liao, "Sparse array microwave 3-D imaging: Compressed sensing recovery and experimental study," Progress In Electromagnetics Research, Vol. 135, 161-181, 2013.
doi:10.2528/PIER12082305 Google Scholar
35. Landweber, L., "An iteration formula for Fredholm integral equations of the first kind," Amer. J. Math, Vol. 73, No. 3, 615-624, 1951.
doi:10.2307/2372313 Google Scholar
36. Hanke, M., A. Neubauer, and O. Scherzer, "A convergence analysis of the Landweber iteration for nonlinear ill-posed problems," Numerische Mathematik, Vol. 72, No. 1, 21-37, 1995.
doi:10.1007/s002110050158 Google Scholar
37. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, 1998.
38. Blumensath, T. and M. E. Davies, "Iterative hard thresholding for compressed sensing," IEEE Trans. Antennas Propag., Vol. 27, No. 3, 265-274, 2009. Google Scholar
39. Wright, S. J., R. D. Nowak, and M. A. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Process., Vol. 57, No. 7, 2479-2493, 2009.
doi:10.1109/TSP.2009.2016892 Google Scholar
40. Kaltenbacher, B., A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-posed Problems, Walter de Gruyter, 2008.
doi:10.1515/9783110208276
41. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09 Google Scholar
42. Bloemenkamp, R. F., A. Abubakar, and P. M. van den Berg, "Inversion of experimental multi-frequency data using the contrast source inversion method," Inverse Problems, Vol. 17, No. 6, 1611-1622, 2001.
doi:10.1088/0266-5611/17/6/305 Google Scholar