1. Butterfielf, J. and J. Earman, Philosophy of Physics, Part A, Elsevier, 2007.
2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
3. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater., Vol. 9, 205, 2010.
doi:10.1038/nmat2629 Google Scholar
4. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Mater., Vol. 9, 193, 2010.
doi:10.1038/nmat2630 Google Scholar
5. Pendry, J. B., "Controlling light on the nanoscale (invited review)," Progress In Electromagnetics Research, Vol. 147, 117-126, 2014.
doi:10.2528/PIER14090305 Google Scholar
6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773, 1996.
doi:10.1080/09500349608232782 Google Scholar
7. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express, Vol. 14, 9794, 2006.
doi:10.1364/OE.14.009794 Google Scholar
8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907 Google Scholar
9. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.
doi:10.1126/science.1126493 Google Scholar
10. Sheng, C., H. Liu, Y.Wang, S. N. Zhu, and D. A. Genov, "Trapping light by mimicking gravitational lensing," Nat. Photonics., Vol. 7, 902, 2013.
doi:10.1038/nphoton.2013.247 Google Scholar
11. Genov, D. A., "Optical black-hole analogues," Nat. Photonics., Vol. 5, 76, 2011.
doi:10.1038/nphoton.2011.5 Google Scholar
12. Reznik, B., "Origin of the thermal radiation in a solid-state analogue of a black hole," Phys. Rev. D, Vol. 62, 044044, 2000.
doi:10.1103/PhysRevD.62.044044 Google Scholar
13. Smolyaninov, I. and Y. J. Hung, "Modeling of time with metamaterials," J. Opt. Soc. Am. B, Vol. 28, 1591, 2011.
doi:10.1364/JOSAB.28.001591 Google Scholar
14. Smolyaninov, I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.
doi:10.1103/PhysRevLett.105.067402 Google Scholar
15. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 655-686(22), 1999.
doi:10.1163/156939399X01104 Google Scholar
16. Chang, Z. and G. Hu, "Elastic wave omnidirectional absorbers designed by transformation method," Applied Phys. Lett., Vol. 101, 054102, 2012.
doi:10.1063/1.4740077 Google Scholar
17. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 247, 2006.
doi:10.1088/1367-2630/8/10/247 Google Scholar
18. Odabasi, H., F. L. Teixeira, and W. C. Chew, "Impedance-matched absorbers and optical pseudo black holes," J. Opt. Soc. Am. B, Vol. 5, 1317, 2011.
doi:10.1364/JOSAB.28.001317 Google Scholar
19. Lu, W., J. Jin, Z. Lin, and H. Chen, "A simple design of an artificial electromagnetic black hole," J. App. Phys., Vol. 108, 064517, 2010.
doi:10.1063/1.3485819 Google Scholar
20. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006 Google Scholar
21. Argyropoulos, C., E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B, Vol. 10, 2020, 2010.
doi:10.1364/JOSAB.27.002020 Google Scholar
22. Wang, H.-W. and L.-W. Chen, "Wide-angle absorber achieved by optical black holes using graded index photonic crystals," J. Opt. Soc. Am. B, Vol. 8, 2222, 2012.
doi:10.1364/JOSAB.29.002222 Google Scholar
23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Applied Phys. Lett., Vol. 95, 041106, 2009.
doi:10.1063/1.3184594 Google Scholar
24. Lee, Y. Y., E. S. Kang, K. H. Jung, J. W. Lee, and D. Ahn, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber," J. Opt. Soc. Am. B, Vol. 8, 1948, 2014.
doi:10.1364/JOSAB.31.001948 Google Scholar
25. Prokopeva, L. J., E. E. Narimanov, and A. V. Kildishev, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber: Comment," J. Opt. Soc. Am. B, Vol. 4, 719, 2015.
doi:10.1364/JOSAB.32.000719 Google Scholar
26. Kildishev, A. V., L. J. Prokopeva, and E. E. Narimanov, "Cylinder light concentrator and absorber: Theoretical description," Opt. Express, Vol. 18, 16646, 2010.
doi:10.1364/OE.18.016646 Google Scholar
27. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Infrared radiative properties of two-dimensional square optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 2584, 2011.
doi:10.1016/j.jqsrt.2011.08.002 Google Scholar
28. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Phys. Lett. A, Vol. 374, 2305, 2010.
doi:10.1016/j.physleta.2010.03.061 Google Scholar
29. Chen, H., R.-X. Miao, and M. Li, "Transformation optics that mimics the system outside a Schwarzschild black hole," Opt. Exp., Vol. 14, 15183, 2010.
doi:10.1364/OE.18.015183 Google Scholar
30. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687, 2009.
doi:10.1038/nphys1338 Google Scholar
31. Khorasani, S. and B. Rashidian, "Optical anisotropy of schwarzschild metric within equivalent medium framework," Optics Communications, Vol. 283, 1222, 2010.
doi:10.1016/j.optcom.2009.11.090 Google Scholar
32. Nerkararyan, K. V., S. K. Nerkararyan, and S. I. Bozhevolnyi, "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons," Opt. Lett., Vol. 22, 4311, 2011.
doi:10.1364/OL.36.004311 Google Scholar
33. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Radiative properties of optical board embedded with optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 832, 2011.
doi:10.1016/j.jqsrt.2010.10.017 Google Scholar
34. Mackay, T. G. and A. Lakhtakia, "Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial," Phys. Rev. B, Vol. 83, 195424, 2011.
doi:10.1103/PhysRevB.83.195424 Google Scholar
35. Smolyaninov, I. I., "Virtual black holes in hyperbolic metamaterials,", Arxive: 1101.4625, 2011. Google Scholar
36. Zhang, Y.-L., X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "Steering electromagnetic beams with conical curvature singularities," Opt. Lett., Vol. 40, 4784, 2015. Google Scholar
37. Boston, B. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Phys. Rev. D., Vol. 91, 124035, 2015.
doi:10.1103/PhysRevD.91.124035 Google Scholar
38. Smolyaninov, I., "Hyperbolic metamaterials,", arXive: 1510.07137, 2015. Google Scholar
39. Smolyaninov, I., E. Hwang, and E. E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. D, Vol. 85, 235122, 2012.
doi:10.1103/PhysRevB.85.235122 Google Scholar
40. Smolyaninov, I., "Surface plasmon toy model of a rotating black hole," New J. Phys., Vol. 5, 147, 2003.
doi:10.1088/1367-2630/5/1/147 Google Scholar
41. Smolyaninov, I., "Critical opalescence in hyperbolic metamaterials," J. Opt., Vol. 13, 125101, 2011.
doi:10.1088/2040-8978/13/12/125101 Google Scholar
42. Smolyaninov, I., E. Hwang, and E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. B, Vol. 85, 235122, 2012.
doi:10.1103/PhysRevB.85.235122 Google Scholar
43. Smolyaninov, I. and Y. Hung, "Minkowski domain walls in hyperbolic metamaterials," Phys. Lett. A, Vol. 373, 353, 2013.
doi:10.1016/j.physleta.2012.11.056 Google Scholar
44. Smolyaninov, I., "Quantum electromagnetic black holes in a strong magnetic field," J. Phys. G: Nucl. Part. Phys., Vol. 40, 015005, 2013.
doi:10.1088/0954-3899/40/1/015005 Google Scholar
45. Smolyaninov, I., Y. Hung, and E. Hwang, "Experimental modeling of cosmological inflation with metamaterials," Phys. Lett. A, Vol. 376, 2575, 2012.
doi:10.1016/j.physleta.2012.07.010 Google Scholar
46. Kinsler, P. and M. W. McCall, "The futures of transformations and metamaterials," Photon. Nanostruct. Fundam. Appl., Vol. 15, 10, 2015.
doi:10.1016/j.photonics.2015.04.005 Google Scholar
47. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.
doi:10.1088/2040-8978/13/2/024003 Google Scholar
48. Kinsler, P. and M. W. McCall, "Transformation devices: carpets in space and space-time," Phys. Rev. A, Vol. 81, 063818, 2014.
doi:10.1103/PhysRevA.89.063818 Google Scholar
49. Halimeh, J. C., R. T. Thompson, and M. Wegener, "Invisibility cloaks in relativistic motion,", arXive: 1510.06144, 2015. Google Scholar
50. Susskind, L. and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution, World Scientific, 2005.
51. Leonhardt, U., "On cosmology in the laboratory," Phil. Trans. R. Soc. A, Vol. 373, 20140354, 2015.
doi:10.1098/rsta.2014.0354 Google Scholar
52. Faccio, D., F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, and U. Moschella, Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment, Springer, 2013.
53. Gron, O. and S. Hervik, Einsteins General Theory of Relativity, Springer, 2007.
doi:10.1007/978-0-387-69200-5
54. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, 2010.
55. Misner, C. W., K. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, 1973.
56. Landau, L. and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, 2000.
57. Padmanabhan, T., Gravitation, Cambridge University Press, 2010.
doi:10.1017/CBO9780511807787
58. Kaliteevski, M. A., R. A. Abram, V. V. Nikolaev, and G. S. Sololovski, "Bragg reflectors for cylindrical waves," J. Mod. Opt., Vol. 46, 875, 1999.
doi:10.1080/09500349908231310 Google Scholar
59. Zimmermann, E., R. Dandliker, and N. Souli, "Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach," J. Opt. Soc. Am., Vol. 12, 398, 1995.
doi:10.1364/JOSAA.12.000398 Google Scholar
60. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983.
61. Landau, L. and E. Lifshitz, Electrodynamics of Continuous Media, Elsevier, 2004.
62. Dehdashti, S., R. Roknizadeh, and A. Mahdifar, "Analogue special and general relativity by optical multilayer thin films: the Rindler space case," J. Mod. Opt., Vol. 60, 233, 2013.
doi:10.1080/09500340.2013.769638 Google Scholar