1. Meng, L. Y., Y. Shang, Q. K. Li, Y. F. Li, X. W. Zhan, Z. G. Shuai, R. G. E. Kimber, and A. B. Walker, "Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics," J. Phys. Chem. B, Vol. 114, No. 1, 36-41, 2010.
doi:10.1021/jp907167u Google Scholar
2. Koster, L. J. A., E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of Polymer/fullerene bulk heterojunction solar cells," Phys. Rev. B, Vol. 72, No. 8, 085205, 2005.
doi:10.1103/PhysRevB.72.085205 Google Scholar
3. Keldysh, L.-V., "Diagram technique for nonequilibrium processes," Sov. Phys. JETP, Vol. 20, 1018, 1965. Google Scholar
4. Meir, Y. and N. S. Wingreen, "Landauer formula for the current through an interacting electron region," Phys. Rev. Lett., Vol. 68, 2512, 1992.
doi:10.1103/PhysRevLett.68.2512 Google Scholar
5. Jauho, A.-P., N. S. Wingreen, and Y. Meir, "Time-dependent transport in interacting and noninteracting resonant-tunneling systems," Phys. Rev. B, Vol. 50, No. 8, 5528, 1994.
doi:10.1103/PhysRevB.50.5528 Google Scholar
6. Zheng, X., F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, "Time-dependent density-functional theory for open systems," Phys. Rev. B, Vol. 75, No. 19, 195127, 2007.
doi:10.1103/PhysRevB.75.195127 Google Scholar
7. Kwok, Y. H., H. Xie, C. Y. Yam, X. Zheng, and G. H. Chen, "Time-dependent density functional theory quantum transport simulation in non-orthogonal basis," J. Chem. Phys., Vol. 139, No. 22, 224111, 2013.
doi:10.1063/1.4840655 Google Scholar
8. Wang, R. L., X. Zheng, Y. H. Kwok, H. Xie, G. H. Chen, and C. Y. Yam, "Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions," J. Chem. Phys., Vol. 142, No. 14, 144112, 2015.
doi:10.1063/1.4917172 Google Scholar
9. Henrickson, L. E., "Nonequilibrium photocurrent modeling in resonant tunneling photodetectors," J. Appl. Phys., Vol. 91, No. 10, 6273-6281, 2002.
doi:10.1063/1.1473677 Google Scholar
10. Galperin, M. and A. Nitzan, "Current-induced light emission and light-induced current in molecular-tunneling junctions," Phys. Rev. Lett., Vol. 95, 206802, 2005.
doi:10.1103/PhysRevLett.95.206802 Google Scholar
11. Galperin, M. and A. Nitzan, "Molecular optoelectronics: The interaction of molecular conduction junctions with light," Phys. Chem., Vol. 14, 9421, 2012. Google Scholar
12. Zhang, Y., L. Y. Meng, C. Y. Yam, and G. H. Chen, "Quantum-mechanical prediction of nanoscale photovoltaics," J. Phys. Chem. Lett., Vol. 5, 1272, 2014.
doi:10.1021/jz5003154 Google Scholar
13. Fetter, A. L. and J. D. Walecka, Quantum Theory of Many Particle Systems, Dover, 1971.
14. Yam, C. Y., L. Y. Meng, Y. Zhang, and G. H. Chen, "A multiscale quantum mechanics/electromagnetics method for device," Chem. Soc. Rev., Vol. 44, 1763, 2015.
doi:10.1039/C4CS00348A Google Scholar
15. Meng, L. Y., C. Y. Yam, Y. Zhang, R. L. Wang, and G. H. Chen, "Multiscale modeling of plasmon-enhanced power conversion efficiency in nanostructured solar cells," J. Phys. Chem. Lett., Vol. 6, 4410, 2015.
doi:10.1021/acs.jpclett.5b01913 Google Scholar
16. Porezag, D., T. Frauenheim, T. K¨ohler, G. Seifert, and R. Kaschner, "Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon," Phys. Rev. B, Vol. 51, No. 19, 12947, 1995.
doi:10.1103/PhysRevB.51.12947 Google Scholar
17. Elstner, M., D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, "Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties," Phys. Rev. B, Vol. 58, No. 11, 7260, 1998.
doi:10.1103/PhysRevB.58.7260 Google Scholar
18. Pearton, S. J. and F. Ren, "GaN electronics advanced materials," Adv. Mater., Vol. 12, 1571, 2000.
doi:10.1002/1521-4095(200011)12:21<1571::AID-ADMA1571>3.0.CO;2-T Google Scholar
19. Shui, R. J., G. A. Vawter, C. G. Willison, M. M. Bridges, J. W. Lee, S. J. Pearton, and C. R. Abernathy, "Comparison of plasma etch techniques for III-V nitrides," Solid State Electron., Vol. 42, 2259, 1998. Google Scholar
20. Johnson, J. C., et al. "Single gallium nitride nanowire lasers," Nat. Mater., Vol. 1, 106, 2002.
doi:10.1038/nmat728 Google Scholar
21. Wallentin, J., et al. "InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit," Science, Vol. 339, 1057-1060, 2013.
doi:10.1126/science.1230969 Google Scholar
22. Krogstrup, P., et al. "Single-nanowire solar cells beyond the Shockley-Queisser limit," Nat. Photon., Vol. 6, 306-310, 2013.
doi:10.1038/nphoton.2013.32 Google Scholar
23. Ramer, N. J. and A. M. Rappe, "Virtual-crystal approximation that works: Locating a compositional phase boundary in Pb(Zr1−xTix)O3," Phys. Rev. B, Vol. 62, R743, 2000.
doi:10.1103/PhysRevB.62.R743 Google Scholar
24. Carter, D. J., J. D. Gale, B. Delley, and C. Stampfl, "Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles," Phys. Rev. B, Vol. 77, 115349, 2008.
doi:10.1103/PhysRevB.77.115349 Google Scholar
25. Fang, D. Q., A. L. Rosa, Th. Frauenheim, and R. Q. Zhang, "Band gap engineering of GaN nanowires by surface functionalization," Appl. Phys. Lett., Vol. 94, 073116, 2009.
doi:10.1063/1.3086316 Google Scholar