Vol. 155
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-02-17
Synthesis of Sparse or Thinned Linear and Planar Arrays Generating Reconfigurable Multiple Real Patterns by Iterative Linear Programming
By
Progress In Electromagnetics Research, Vol. 155, 27-38, 2016
Abstract
It is shown in this paper that the problem of reducing the number of elements for multiple-pattern arrays can be solved by a sequence of reweighted ℓ1 optimizations under multiple linear constraints. To do so, conjugate symmetric excitations are assumed so that the upper and lower bounds for each pattern can be formulated as linear inequality constraints. In addition, we introduce an auxiliary variable for each element to define the common upper bound of both the real and imaginary parts of multiple excitations for different patterns, so that only linear inequality constraints are required. The objective function minimizes the reweighted ℓ1-norm of these auxiliary variables for all elements. Thus, the proposed method can be efficiently implemented by the iterative linear programming. For multiple desired patterns, the proposed method can select the common elements with multiple set of optimized amplitudes and phases, consequently reducing the number of elements. The radiation characteristics for each pattern, such as the mainlobe shape, response ripple, sidelobe level and nulling region, can be accurately controlled. Several synthesis examples for linear arrays, rectangular/triangular-grid and randomly spaced planar arrays are presented to validate the effectiveness of the proposed method in the reduction of the number of elements.
Citation
Yanhui Liu, Pengfei You, Chunhui Zhu, Xiaofeng Tan, and Qing Huo Liu, "Synthesis of Sparse or Thinned Linear and Planar Arrays Generating Reconfigurable Multiple Real Patterns by Iterative Linear Programming," Progress In Electromagnetics Research, Vol. 155, 27-38, 2016.
doi:10.2528/PIER15120401
References

1. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proc. IEEE, No. 3, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000        Google Scholar

2. Angeletti, P. and M. Lisi, "Multimode beamforming networks for space applications," IEEE Antennas Propagat. Mag., Vol. 56, No. 1, 62-78, 2014.
doi:10.1109/MAP.2014.6821760        Google Scholar

3. Panduro, M. A. and C. del Río-Bocio, "Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER08070403        Google Scholar

4. Panduro, M. A. and C. del Río-Bocio, "Design of beam-forming networks using CORPS and evolutionary optimization," International Journal of Electronics and Communications, Vol. 63, No. 5, 353-365, 2009.
doi:10.1016/j.aeue.2008.02.009        Google Scholar

5. Arce, A., D. H. Covarrubias, M. A. Panduro, et al. "A new multiple-beam forming network design approach for a planar antenna array using CORPS," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 294-306, 2012.
doi:10.1163/156939312800030910        Google Scholar

6. Ferrando, N. and N. J. G. Fonseca, "Investigations on the efficiency of array fed coherently radiating periodic structure beam forming networks," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 493-502, 2011.
doi:10.1109/TAP.2010.2096392        Google Scholar

7. Bucci, O. M., G. Mazzarella, and G. Panariello, "Reconfigurable arrays by phase-only control," IEEE Trans. Antennas Propag., Vol. 39, No. 7, 919-925, 1991.
doi:10.1109/8.86910        Google Scholar

8. Vescovo, R., "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1555-1565, 2008.
doi:10.1109/TAP.2008.923297        Google Scholar

9. Gies, D. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design," Microw. Opt. Technol. Lett., Vol. 38, No. 3, 168-175, 2003.
doi:10.1002/mop.11005        Google Scholar

10. Mahanti, G. K., S. Das, and A. Chakraborty, "Design of phase-differentiated reconfigurable array antennas with minimum dynamic range ratio," IEEE Antennas Wireless Propag. Lett., Vol. 5, No. 1, 262-264, 2006.
doi:10.1109/LAWP.2006.875899        Google Scholar

11. Akdagli, A., K. Guney, and B. Babayigit, "Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 215-227, 2007.
doi:10.1163/156939307779378808        Google Scholar

12. Morabito, A. F., A. Massa, P. Rocca, and T. Isernia, "An effective approach to the synthesis of phase only reconfigurable linear arrays," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3622-3631, 2012.
doi:10.1109/TAP.2012.2201099        Google Scholar

13. Fuchs, B., "Application of convex relaxation to array synthesis problems," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 634-640, 2014.
doi:10.1109/TAP.2013.2290797        Google Scholar

14. Weedon, W. H., "Phased array digital beamforming hardware development at applied radar," Proceedings of the IEEE Int. Symp. Phased Array Systems and Technology, 854-859, Waltham, MA, Oct. 2010.        Google Scholar

15. Liu, Y.-H., Q. H. Liu, and Z.-P. Nie, "Reducing the number of elements in multiple-pattern linear arrays by the extended matrix pencil methods," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 652-660, 2014.
doi:10.1109/TAP.2013.2292529        Google Scholar

16. Kumar, B. P. and G. R. Branner, "Design of unequally spaced arrays for performance improvement," IEEE Trans. Antennas Propag., Vol. 47, No. 3, 511-523, 1999.
doi:10.1109/8.768787        Google Scholar

17. Murino, V., A. Trucco, and A. Tesei, "Beam pattern formulation and analysis for wide-band beamforming systems using sparse arrays," Signal Process., Vol. 56, 177-183, 1997.
doi:10.1016/S0165-1684(96)00166-1        Google Scholar

18. Liu, Y.-H., Z.-P. Nie, and Q. H. Liu, "Reducing the number of elements in a linear antenna array by the matrix pencil method," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2955-2962, 2008.
doi:10.1109/TAP.2008.928801        Google Scholar

19. Bucci, O. M., M. D'Urso, T. Isernia, et al. "Deterministic synthesis of uniform amplitude sparse arrays via new flexible density taper techniques," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1949-1958, 2010.
doi:10.1109/TAP.2010.2046831        Google Scholar

20. Capozzoli, A., C. Curcio, A. Liseno, and G. Toso, "Phase-only synthesis of flat aperiodic reflectarrays," Progress In Electromagnetics Research, Vol. 133, 53-89, 2013.
doi:10.2528/PIER12080109        Google Scholar

21. Oliveri, G., M. Carlin, and A. Massa, "Complex-weight sparse linear array synthesis by Bayesian compressive sampling," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2309-2326, 2012.
doi:10.1109/TAP.2012.2189742        Google Scholar

22. Oraizi, H. and M. Fallahpour, "Nonuniformly spaced linear array design for the specified beamwidth/sidelobe level or specified directivity/sidelobe level with coupling considerations," Progress In Electromagnetics Research M, Vol. 4, 185-209, 2008.
doi:10.2528/PIERM08072302        Google Scholar

23. Holm, S., B. Elgetun, and G. Dahl, "Properties of the beam pattern of weight- and layout-optimized sparse arrays," IEEE Trans. Ultrason., Ferroelect., Freq. Control., Vol. 44, No. 5, 983-991, 1997.
doi:10.1109/58.655623        Google Scholar

24. Zhang, W., L. Li, and F. Li, "Reducing the number of elements in linear and planar antenna arrays with sparseness constrained optimization," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 3106-3111, 2011.
doi:10.1109/TAP.2011.2158943        Google Scholar

25. Wang, X.-K., Y.-C. Jiao, and Y.-Y. Tan, "Gradual thinning synthesis for linear array based on iterative Fourier techniques," Progress In Electromagnetics Research, Vol. 123, 299-320, 2012.
doi:10.2528/PIER11100903        Google Scholar

26. Haupt, R. L., "Thinned array using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, 1994.
doi:10.1109/8.299602        Google Scholar

27. Liu, D., Q. Feng, W.-B. Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502        Google Scholar

28. He, G. L. and B. Wu, "Unified particle swarm optimization with random ternary variables and its application to antenna array synthesis," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 6, 752-764, 2014.
doi:10.1080/09205071.2014.888959        Google Scholar

29. Chen, Y.-K., S.-W. Yang, and Z.-P. Nie, "The application of a modified differential evolution strategy to some array pattern synthesis problems," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 1919-1927, 2008.
doi:10.1109/TAP.2008.924713        Google Scholar

30. Cands, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Analy. Appl., Vol. 14, 877-905, 2008.
doi:10.1007/s00041-008-9045-x        Google Scholar

31. Nai, S. E., W. Ser, Z. L. Yu, et al. "Beam pattern synthesis for linear and planar arrays with antenna selection by convex optimization," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3923-3930, 2010.
doi:10.1109/TAP.2010.2078446        Google Scholar

32. Fuchs, B., "Synthesis of sparse arrays with focused or shaped beam pattern via sequential convex optimizations," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3499-3503, 2012.
doi:10.1109/TAP.2012.2196951        Google Scholar

33. Prisco, G. and M. D'Urso, "Maximally sparse arrays via sequential convex optimizations," IEEE Antennas Wireless Propag. Lett., Vol. 11, 192-195, 2012.
doi:10.1109/LAWP.2012.2186626        Google Scholar

34. Zhao, X.-W., Q.-S. Yang, and Y.-H. Zhang, "Compressed sensing approach for pattern synthesis of maximally sparse non-uniform linear array," IET Microw. Antennas Propag., Vol. 8, No. 5, 301-307, 2014.
doi:10.1049/iet-map.2013.0492        Google Scholar

35. Isernia, T., O. M. Bucci, and N. Fiorentino, "Shaped beam antenna synthesis problems: Feasibility criteria and new strategies," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 1, 103-138, 1998.
doi:10.1163/156939398X00098        Google Scholar

36. Sturm, J. F., "Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones," Optimization Methods Software, Vol. 11, No. 1-4, 625-653, 1999.
doi:10.1080/10556789908805766        Google Scholar