1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, Vol. 155, 459-512, 1865.
doi:10.1098/rstl.1865.0008 Google Scholar
2. Uslenghi, P. L. E., "Scattering by an impedance sphere coated with a chiral layer," Electromagnetics, Vol. 10, 201-211, Jan. 1990.
doi:10.1080/02726349008908236 Google Scholar
3. Mie, G., "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der Physik, Vol. 330, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302 Google Scholar
4. Lorenz, L., "Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle," Det Kongelige Danske Videnskabernes Selskabs Skrifter, Vol. 6, No. 6, 1-62, 1890. Google Scholar
5. Debye, P., "Der Lichtdruck auf Kugeln von beliebigem material," Annalen der Physik, Vol. 30, No. 1, 57-136, 1909.
doi:10.1002/andp.19093351103 Google Scholar
6. Logan, N., "Survey of some early studies of the scattering of plane waves by a sphere," Proceedings of the IEEE, Vol. 53, 773-785, Aug. 1965.
doi:10.1109/PROC.1965.4055 Google Scholar
7. Clebsch, A., "Ueber die reflexion an einer Kugelfläche," Journal für die Reine Und Angewandte Mathematik, Vol. 61, 195-262, 1863.
doi:10.1515/crll.1863.61.195 Google Scholar
8. Nicholson, J., "XVII. On the diffraction of short waves by a rigid sphere," Philosophical Magazine Series 6, Vol. 11, 193-205, Feb. 1906.
doi:10.1080/14786440609463439 Google Scholar
9. Bromwich, T., "X. Electromagnetic waves," Philosophical Magazine Series 6, Vol. 38, 143-164, Jul. 1919. Google Scholar
10. Proudman, J., A. T. Doodson, and G. Kennedy, "Numerical results of the theory of the diffraction of a plane electromagnetic wave by a perfectly conducting sphere," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 217, 279-314, Jan. 1918.
doi:10.1098/rsta.1918.0008 Google Scholar
11. White, F. P., "The diffraction of plane electromagnetic waves by a perfectly reflecting sphere," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 100, 505-525, Feb. 1922.
doi:10.1098/rspa.1922.0014 Google Scholar
12. Wriedt, T., "Mie theory: A review," The Mie Theory, W. Hergert and T. Wriedt, eds., Vol. 169, 53-71, Springer Series in Optical Sciences, Springer Berlin Heidelberg, 2012. Google Scholar
13. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffaction of Light, Pergamon Press, 1959.
14. Lock, J. A. and G. Gouesbet, "Generalized lorenzmie theory and applications," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, No. 11, 800-807, Light Scattering: Mie and More Commemorating 100 years of Mie's 1908 publication, 2009.
doi:10.1016/j.jqsrt.2008.11.013 Google Scholar
15. Aden, A. L. and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," Journal of Applied Physics, Vol. 22, No. 10, 1951.
doi:10.1063/1.1699834 Google Scholar
16. Geng, Y.-L., X.-B. Wu, L.-W. Li, and B.-R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E, Vol. 70, 056609, Nov. 2004. Google Scholar
17. Bohren, C. F., "Light scattering by an optically active sphere," Chemical Physics Letters, Vol. 29, 458-462, Dec. 1974.
doi:10.1016/0009-2614(74)85144-4 Google Scholar
18. Xu, F., K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, "Generalized lorenz-mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid," J. Opt. Soc. Am. A, Vol. 24, 119-131, Jan. 2007.
doi:10.1364/JOSAA.24.000119 Google Scholar
19. Xu, Y.-L. and B. Gustafson, "A generalized multiparticle mie-solution: Further experimental verification," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 70, No. 4-6, 395-419, Light Scattering by Non-Spherical Particles, 2001.
doi:10.1016/S0022-4073(01)00019-X Google Scholar
20. Hough, J. and G. Gouesbet, "Generalized LorenzMie theories, the third decade: A perspective," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, No. 14, 1223-1238, 2009. Google Scholar
21. Han, Y., G. Gréhan, and G. Gouesbet, "Generalized lorenz-mie theory for a spheroidal particle with off-axis gaussian-beam illumination," Appl. Opt., Vol. 42, 6621-6629, Nov. 2003. Google Scholar
22. Waterman, P. C., "New formulation of acoustic scattering," The Journal of the Acoustical Society of America, Vol. 45, No. 6, 1417, 1969.
doi:10.1121/1.1911619 Google Scholar
23. Ström, S., "T matrix for electromagnetic scattering from an arbitrary number of scatterers with continuously varying electromagnetic properties," Phys. Rev. D, Vol. 10, 2685-2690, Oct. 1974. Google Scholar
24. Strom, S. and W. Zheng, "The null field approach to electromagnetic scattering from composite objects," IEEE Transactions on Antennas and Propagation, Vol. 36, 376-383, Mar. 1988.
doi:10.1109/8.192121 Google Scholar
25. Waterman, P. C., "The T-matrix revisited," J. Opt. Soc. Am. A, Vol. 24, 2257-2267, Aug. 2007.
doi:10.1364/JOSAA.24.002257 Google Scholar
26. Nilsson, A. M., P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt., Vol. 37, 2735-2748, May 1998.
doi:10.1364/AO.37.002735 Google Scholar
27. Mishchenko, M. I., G. Videen, N. G. Khlebtsov, and T.Wriedt, "Comprehensive T-matrix reference database: A 20122013 update," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 145-152, 2013.
doi:10.1016/j.jqsrt.2013.01.024 Google Scholar
28. Mishchenko, M. I., M. Kahnert, D. W. Mackowski, and T. Wriedt, "Peter Waterman and his scientific legacy," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 1, 2013.
doi:10.1016/j.jqsrt.2013.01.025 Google Scholar
29. Mishchenko, M. I. and P. A. Martin, "Peter Waterman and T-matrix methods," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 2-7, 2013.
doi:10.1016/j.jqsrt.2012.10.025 Google Scholar
30. Mishchenko, M. I., L. Liu, and D. W. Mackowski, "T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 135-144, 2013.
doi:10.1016/j.jqsrt.2012.11.012 Google Scholar
31. Khlebtsov, N. G., "T-matrix method in plasmonics: An overview," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 184-217, 2013.
doi:10.1016/j.jqsrt.2012.12.027 Google Scholar
32. Wang, Y. and W. Chew, "A recursive t-matrix approach for the solution of electromagnetic scattering by many spheres," IEEE Transactions on Antennas and Propagation, Vol. 41, 1633-1639, Dec. 1993.
doi:10.1109/8.273306 Google Scholar
33. Abraham, M. and R. Becker, The Classical Theory of Electricity and Magnetism, Blackie & Son Ltd., 1937.
34. Wicklund, J., "Extrapolation of the electromagnetic field,", Tech. Rep., Diamond Ordnance Fuze Laboratories, 1962. Google Scholar
35. Granzow, K. D., "Multipole theory in the time domain," Journal of Mathematical Physics, Vol. 7, 634, Dec. 1966.
doi:10.1063/1.1704976 Google Scholar
36. Granzow, K. D., "Time-domain treatment of a spherical boundary-value problem," Journal of Applied Physics, Vol. 39, 3435, Nov. 1968. Google Scholar
37. Davidon, W. C., "Time-dependent multipole analysis," Journal of Physics A: Mathematical, Nuclear and General, Vol. 6, 1635-1646, Nov. 1973. Google Scholar
38. Campbell, W., J.Macek, and T. Morgan, "Relativistic time-dependent multipole analysis for scalar, electromagnetic, and gravitational fields," Phys. Rev. D, Vol. 15, 2156-2164, Apr. 1977.
doi:10.1103/PhysRevD.15.2156 Google Scholar
39. Buyukdura, O. M. and S. S. Koc, "Two alternative expressions for the spherical wave expansion of the time domain scalar free-space Green's function and an application: Scattering by a soft sphere," Journal of the Acoustical Society of America, Vol. 101, No. 1, 87-91, 1997.
doi:10.1121/1.417968 Google Scholar
40. Azizoglu, S., S. Koc, and O. Buyukdura, "Spherical wave expansion of the time-domain free- space dyadic Green's function," IEEE Transactions on Antennas and Propagation, Vol. 52, 677-683, Mar. 2004.
doi:10.1109/TAP.2004.825494 Google Scholar
41. Sauter, S. and A. Veit, "Retarded boundary integral equations on the sphere: Exact and numerical solution," IMA Journal of Numerical Analysis, 2013. Google Scholar
42. Greengard, L., T. Hagstrom, and S. Jiang, "The solution of the scalar wave equation in the exterior of a sphere," Journal of Computational Physics, Vol. 274, 191-207, Oct. 2014. Google Scholar
43. Li, J., D. Dault, and B. Shanker, "A quasianalytical time domain solution for scattering from a homogeneous sphere," The Journal of the Acoustical Society of America, Vol. 135, 1676-1685, Apr. 2014.
doi:10.1121/1.4868398 Google Scholar
44. Greengard, L., T. Hagstrom, and S. Jiang, "Extension of the lorenzmiedebye method for electromagnetic scattering to the time-domain," Journal of Computational Physics, Vol. 299, 98-105, 2015.
doi:10.1016/j.jcp.2015.07.009 Google Scholar
45. Li, J. and B. Shanker, "Time-dependent debye-mie series solutions for electromagnetic scattering," IEEE Transactions on Antennas and Propagation, Vol. 63, 3644-3653, Aug. 2015.
doi:10.1109/TAP.2015.2439294 Google Scholar
46. Hovenac, E. A. and J. A. Lock, "Assessing the contributions of surface waves and complex rays to far-field mie scattering by use of the debye series," J. Opt. Soc. Am. A, Vol. 9, 781-795, May 1992.
doi:10.1364/JOSAA.9.000781 Google Scholar
47. Lock, J. A. and P. Laven, "Mie scattering in the time domain. Part 1. The role of surface waves," J. Opt. Soc. Am. A, Vol. 28, 1086-1095, Jun. 2011.
doi:10.1364/JOSAA.28.001086 Google Scholar
48. Lock, J. A. and P. Laven, "Mie scattering in the time domain. Part II. The role of diffraction," J. Opt. Soc. Am. A, Vol. 28, 1096-1106, Jun. 2011.
doi:10.1364/JOSAA.28.001096 Google Scholar
49. Li, R., X. Han, H. Jiang, and K. F. Ren, "Debye series for light scattering by a multilayered sphere," Appl. Opt., Vol. 45, 1260-1270, Feb. 2006.
doi:10.1364/AO.45.001260 Google Scholar
50. Li, J., D. Dault, N. Nair, and B. Shanker, "Analysis of scattering from complex dielectric objects using the generalized method of moments," J. Opt. Soc. Am. A, Vol. 31, 2346-2355, Nov. 2014. Google Scholar
51. Hsiao, G. and R. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, 316-328, Mar. 1997.
doi:10.1109/8.558648 Google Scholar
52. Shanker, B., A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 48, 1064-1074, Jul. 2000. Google Scholar
53. Shanker, B., A. Ergin, M. Lu, and E. Michielssen, "Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, 628-641, Mar. 2003.
doi:10.1109/TAP.2003.809054 Google Scholar
54. Grote, M. J. and J. B. Keller, "Exact nonreflecting boundary conditions for the time dependent wave equation," SIAM Journal on Applied Mathematics, Vol. 55, No. 2, 280-297, 1995.
doi:10.1137/S0036139993269266 Google Scholar
55. Alpert, B., L. Greengard, and T. Hagstrom, "Nonreflecting boundary conditions for the timedependent wave equation," J. Comput. Phys., Vol. 180, 270-296, 2002.
doi:10.1006/jcph.2002.7093 Google Scholar
56. Tijhuis, A. G., "Toward a stable marching-on-in-time method for two-dimensional transient electromagnetic scattering problems," Radio Science, Vol. 19, No. 5, 1311-1317, 1984.
doi:10.1029/RS019i005p01311 Google Scholar
57. Sadigh, A. and E. Arvas, "Treating the instabilities in marching-on-in-time method from a different perspective [electromagnetic scattering]," IEEE Transactions on Antennas and Propagation, Vol. 41, 1695-1702, Dec. 1993.
doi:10.1109/8.273314 Google Scholar
58. Ha-Duong, T., B. Ludwig, and I. Terrasse, "A Galerkin bem for transient acoustic scattering by an absorbing obstacle," International Journal for Numerical Methods in Engineering, Vol. 57, No. 13, 1845-1882, 2003.
doi:10.1002/nme.745 Google Scholar
59. Wang, X., R. Wildman, D. S. Weile, and P. Monk, "A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 56, 2442-2452, Aug. 2008.
doi:10.1109/TAP.2008.926753 Google Scholar
60. Pray, A., N. Nair, and B. Shanker, "Stability properties of the time domain electric field integral equation using a separable approximation for the convolution with the retarded potential," IEEE Transactions on Antennas and Propagation, Vol. 60, 3772-3781, Aug. 2012.
doi:10.1109/TAP.2012.2201101 Google Scholar
61. Van'tWout, E., D. van der Heul, H. van der Ven, and C. Vuik, "The influence of the exact evaluation of radiation fields in finite precision arithmetic on the stability of the time domain integral equation method," IEEE Transactions on Antennas and Propagation, Vol. 61, 6064-6074, Dec. 2013.
doi:10.1109/TAP.2013.2281365 Google Scholar
62. Van't Wout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "Stability analysis of the marching-on-in-time boundary element method for electromagnetics," Journal of Computational and Applied Mathematics, Vol. 294, 358-371, 2016.
doi:10.1016/j.cam.2015.09.002 Google Scholar