1. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, 1994.
2. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.
3. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Wiley, 1994.
doi:10.1109/9780470546307
4. Harrington, R. F. and J. L. Harrington, Field Computation by Moment Methods, Oxford University Press, 1996.
5. Tsang, L., H. Chen, C. C. Huang, and V. Jandhyala, "Modeling of multiple scattering among vias in planar waveguides using Foldy-Lax equations," Microw. Opt. Tech. Lett., Vol. 31, 201-208, Nov. 2001.
doi:10.1002/mop.1398 Google Scholar
6. Chen, H., Q. Li, L. Tsang, C. C. Huang, and V. Jandhyala, "Analysis of large number of vias and differential signaling in multi-layered structures," IEEE Trans. on Microw. Theory and Tech., Vol. 51, 818-829, Mar. 2003.
doi:10.1109/TMTT.2003.808616 Google Scholar
7. Chang, X. and L. Tsang, "Fast and broadband modeling method for multiple vias with irregular antipad in arbitrarily shaped power/ground planes in 3-D IC and packaging based on generalized Foldy-Lax equations," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 4, No. 4, 685-696, Apr. 2014.
doi:10.1109/TCPMT.2013.2290897 Google Scholar
8. Conciauro, G., M. Guglielmi, and R. Sorrentino, Advanced Modal Analysis: CAD Techniques for Waveguide Components and Filters, Wiley, 2002.
9. Bozzi, M., L. Perregrini, and K. Wu, "Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3153-–3161, Dec. 2008.
doi:10.1109/TMTT.2008.2007140 Google Scholar
10. Arcioni, P., M. Bozzi, M. Bressan, G. Conciauro, and L. Perregrini, "The BI-RME method: An historical overview," 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), May 14–16, 2014. Google Scholar
11. Tsang, L. and S. Huang, Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique, Provisional U.S. Patent No. 62/152.702, Apr. 24, 2015.
12. Huang, S., "Broadband Green’s function and applications to fast electromagnetic analysis of high-speed interconnects,", Ph.D. dissertation, Dept. Elect. Eng., Univ. Washington, Seattle, WA, Jun. 2015. Google Scholar
13. Tsang, L. and S. Huang, "Broadband Green’s function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress In Electromagnetic Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605 Google Scholar
14. Huang, S. and L. Tsang, "Fast electromagnetic analysis of emissions from printed circuit board using broadband Green’s function method," IEEE Trans. on Electromagnetic Compatibility, Vol. 58, 1642-1652, 2016.
doi:10.1109/TEMC.2016.2565584 Google Scholar
15. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901 Google Scholar
16. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scattering using broadband Green’s function with low wavenumber extraction (BBGFL)," Optics Express, Vol. 24, No. 2, 945-965, 2016.
doi:10.1364/OE.24.000945 Google Scholar