1. Chow, E., M. Morris, and P. Irazoqui, "Implantable RF medical devices: The benefits of highspeed communication and much greater communication distances in biomedical applications," IEEE Microw. Mag., Vol. 14, No. 4, 64-73, Jun. 2013.
doi:10.1109/MMM.2013.2248586 Google Scholar
2. Kiourti, A., K. A. Psathas, and K. S. Nikita, "Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges: Implantable/Ingestible medical devices," Bioelectromagnetics, Vol. 35, No. 1, 1-15, Jan. 2014.
doi:10.1002/bem.21813 Google Scholar
3. Psathas, K., A. P. Keliris, A. Kiourti, K. S. Nikita, et al. "Operation of ingestible antennas along the gastrointestinal tract: Detuning and performance," 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), 1-4, 2013. Google Scholar
4. Weiss, M. D., J. L. Smith, and J. Bach, "RF coupling in a 433-MHz biotelemetry system for an artificial hip," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 916-919, 2009.
doi:10.1109/LAWP.2009.2028906 Google Scholar
5. Crescini, D., E. Sardini, and M. Serpelloni, "Design and test of an autonomous sensor for force measurements in human knee implants," Sens. Actuators Phys., Vol. 166, No. 1, 1-8, Mar. 2011.
doi:10.1016/j.sna.2010.12.010 Google Scholar
6. Kawoos, U., X. Meng, M.-R. Tofighi, and A. Rosen, "Too much pressure: Wireless intracranial pressure monitoring and its application in traumatic brain injuries," IEEE Microw. Mag., Vol. 16, No. 2, 39-53, Mar. 2015.
doi:10.1109/MMM.2014.2377585 Google Scholar
7. Chow, E. Y., A. L. Chlebowski, S. Chakraborty, W. J. Chappell, and P. P. Irazoqui, "Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent," IEEE Trans. Biomed. Eng., Vol. 57, No. 6, 1487-1496, Jun. 2010.
doi:10.1109/TBME.2010.2041058 Google Scholar
8. Marnat, L., M. H. Ouda, M. Arsalan, K. Salama, and A. Shamim, "On-chip implantable antennas for wireless power and data transfer in a Glaucoma-monitoring SoC," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1671-1674, 2012.
doi:10.1109/LAWP.2013.2240253 Google Scholar
9. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous Glucose monitoring," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 1001-1008, Apr. 2008.
doi:10.1109/TMTT.2008.919373 Google Scholar
10. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1944-1951, Aug. 2004.
doi:10.1109/TMTT.2004.831976 Google Scholar
11. Kim, J. and Y. Rahmat-Samii, "Planar inverted-F antennas on implantable medical devices: Meandered type versus spiral type," Microw. Opt. Technol. Lett., Vol. 48, No. 3, 567-572, Mar. 2006.
doi:10.1002/mop.21409 Google Scholar
12. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1934-1943, Aug. 2004.
doi:10.1109/TMTT.2004.832018 Google Scholar
13. Lee, C.-M., T.-C. Yo, and C.-H. Luo, "Compact broadband stacked implantable antenna for biotelemetry with medical devices," 2006 WAMICON’06 IEEE Annual Wireless and Microwave Technology Conference, 1-4, IEEE, 2006. Google Scholar
14. Liu, W.-C., S.-H. Chen, and C.-M. Wu, "Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices," Microw. Opt. Technol. Lett., Vol. 51, No. 3, 755-757, Mar. 2009.
doi:10.1002/mop.24142 Google Scholar
15. Abadia, J., F. Merli, J.-F. Zurcher, J. R. Mosig, and A. K. Skrivervik, "3D-spiral small antenna design and realization for biomedical telemetry in the MICS band," Radioengineering, Vol. 18, No. 4, 359-367, 2009. Google Scholar
16. Bakogianni, S. and S. Koulouridis, "Design of a novel compact printed folded dipole antenna for biomedical applications," 2014 8th European Conference on Antennas and Propagation (EuCAP), 3178-3182, IEEE, 2014.
doi:10.1109/EuCAP.2014.6902503 Google Scholar
17. Yilmaz, T., T. Karacolak, and E. Topsakal, "Characterization and testing of a skin mimicking material for implantable antennas operating at ISM band (2.4 GHz–2.48 GHz)," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 418-420, 2008.
doi:10.1109/LAWP.2008.2001736 Google Scholar
18. Gosalia, K., G. Lazzi, and M. Humayun, "Investigation of a microwave data telemetry link for a retinal prosthesis," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1925-1933, Aug. 2004.
doi:10.1109/TMTT.2004.832007 Google Scholar
19. Kiourti, A., K. A. Psathas, J. R. Costa, C. A. Fernandes, and K. S. Nikita, "Dual-band implantable antennas for medical telemetry: A fast design methodology and validation for intra-cranial pressure monitoring," Progress In Electromagnetics Research, Vol. 141, 161-183, 2013.
doi:10.2528/PIER13051706 Google Scholar
20. Kiourti, A., M. Christopoulou, and K. S. Nikita, "Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 392-395, IEEE, 2011.
doi:10.1109/APS.2011.5996726 Google Scholar
21. Lee, C.-M., T.-C. Yo, F.-J. Huang, and C.-H. Luo, "Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry," Microw. Opt. Technol. Lett., Vol. 51, No. 3, 749-752, Mar. 2009.
doi:10.1002/mop.24189 Google Scholar
22. Chen, Z. N., G. C. Liu, and T. S. P. See, "Transmission of RF signals between MICS loop antennas in free space and implanted in the human head," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1850-1854, Jun. 2009.
doi:10.1109/TAP.2009.2019933 Google Scholar
23. Anacleto, P., P. M. Mendes, E. Gultepe, and D. H. Gracias, "3D small antenna for energy harvesting applications on implantable micro-devices," 2012 Loughborough Antennas and Propagation Conference (LAPC), 1-4, IEEE, 2012. Google Scholar
24. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515 Google Scholar
25. Vidal, N., J. M. Lopez-Villegas, S. Curto, J. Colomer, S. Ahyoune, A. Garcia, et al. "Design of an implantable broadband antenna for medical telemetry applications," 2013 7th European Conference on Antennas and Propagation (EuCAP), 1133-1136, IEEE, 2013. Google Scholar
26. Furse, C. M., "Biomedical telemetry: Today’s opportunities and challenges," 2009 iWAT 2009 IEEE International Workshop on Antenna Technology, 1-4, IEEE, 2009. Google Scholar
27. Liu, W.-C., F.-M. Yeh, and M. Ghavami, "Miniaturized implantable broadband antenna for biotelemetry communication," Microw. Opt. Technol. Lett., Vol. 50, No. 9, 2407-2409, 2008.
doi:10.1002/mop.23649 Google Scholar
28. Guo, Y.-X. and H. S. Tan, "New compact six-band internal antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 3, No. 1, 295-297, Dec. 2004. Google Scholar
29. Karkkainen, M. K., "Meandered multiband PIFA with coplanar parasitic patches," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 10, 630-632, Oct. 2005.
doi:10.1109/LMWC.2005.856692 Google Scholar
30. Gandara, T. and C. Peixeiro, "Compact triple-band double U-slotted planar inverted-F antenna," IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., 417-421, 2004. Google Scholar
31. Lee, K.-J., T.-K. Lee, and J. W. Lee, "Bandwidth enhanced planar inverted-F antenna with modified ground structure," 2007 APMC 2007 Asia-Pacific Microwave Conference, 1-4, IEEE, 2007. Google Scholar
32. Feick, R., H. Carrasco, M. Olmos, and H. D. Hristov, "PIFA input bandwidth enhancement by changing feed plate silhouette," Electron Lett., Vol. 40, No. 15, 921-922, 2004.
doi:10.1049/el:20045276 Google Scholar
33. "Medical Implant Communications Service (MICS) federal register," Rules Regul., Vol. 124, No. 240, 69926-69934, 1999. Google Scholar
34. Luo, J. and R. E. Eitel, "A biocompatible low temperature co-fired ceramic substrate for biosensors," Int. J. Appl. Ceram. Technol., Vol. 11, No. 3, 436-442, May 2014.
doi:10.1111/ijac.12206 Google Scholar
35. Baras, T. and A. F. Jacob, "Manufacturing reliability of LTCC millimeter-wave passive components," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2574-2581, Nov. 2008.
doi:10.1109/TMTT.2008.2005918 Google Scholar
36. Golonka, L., P. Bembnowicz, D. Jurkow, K. Malecha, H. Roguszczak, and R. Tadaszak, "Low temperature co-fired ceramics (LTCC) microsystems," Opt. Appl., Vol., Vol. 41, No. 2, 383-388, 2011. Google Scholar
37. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
38. Smetana, W., B. Balluch, G. Stangl, E. Gaubitzer, M. Edetsberger, and G. Kohler, "A multi-sensor biological monitoring module built up in LTCC-technology," Microelectron. Eng., Vol. 84, No. 5–8, 1240-1243, May 2007.
doi:10.1016/j.mee.2007.01.155 Google Scholar
39. Yee, K., "Numerical solution of initial value problems of maxwells equations," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
40. Christ, A., W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, et al. "The virtual family — Development of surface-based anatomical models of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, No. 2, N23-38, Jan. 21, 2010.
doi:10.1088/0031-9155/55/2/N01 Google Scholar
41. Federal Communications Comission "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields,", Washington, DC, 2001. Google Scholar
42. Warty, R., M.-R. Tofighi, U. Kawoos, and A. Rosen, "Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 10, 2366-2376, Oct. 2008.
doi:10.1109/TMTT.2008.2004254 Google Scholar
43. Permana, H., Q. Fang, and W. S. Rowe, "Hermetic implantable antenna inside vitreous humor simulating fluid," Progress In Electromagnetics Research, Vol. 133, 571-590, 2013.
doi:10.2528/PIER12090806 Google Scholar
44. Skrivervik, A., J.-F. Zurcher, O. Staub, and J. Mosig, "PCS antenna design: The challenge of miniaturization," IEEE Antennas Propag. Mag., Vol. 43, No. 4, 12-27, 2001.
doi:10.1109/74.951556 Google Scholar
45. Skrivervik, A. and F. Merli, "Design strategies for implantable antennas," Proc. Loughborough Antennas & Propagation Conference, Loughborough, UK, 2011. Google Scholar