1. Hoult, D. I. and P. C. Lauterbur, "The sensitivity of the zeugmatographic experiment involving human samples," J. Magn. Reson., Vol. 34, 425-433, 1979. Google Scholar
2. Ocali, O. and E. Atalar, "Ultimate intrinsic signal-to-noise ratio in MRI," Magn. Reson. Med., Vol. 39, 462-473, 1988.
doi:10.1002/mrm.1910390317 Google Scholar
3. Eryaman, Y., Y. Oner, and E. Atalar, "Design of internal coils using ultimate intrinsic SNR," Magn. Reson. Mater. Phys., Vol. 22, 221-228, 2009.
doi:10.1007/s10334-009-0167-1 Google Scholar
4. Inui, K., S. Nakazawa, J. Yoshino, et al. "Endoscopic MRI: Preliminary results of a new technique for visualization and staging of gastrointestinal tumors," Endoscopy, Vol. 27, 480-485, 1995.
doi:10.1055/s-2007-1005752 Google Scholar
5. Gilderdale, D. J., A. D. Williams, U. Dave, and N. M. de Souza, "An inductively-coupled, detachable receiver coil system for use with magnetic resonance compatible endoscopes," JMRI, Vol. 18, 131-135, 2003.
doi:10.1002/jmri.10321 Google Scholar
6. Syms, R. R. A., I. R. Young, C. A. Wadsworth, S. D. Taylor-Robinson, and M. Rea, "Magnetic resonance imaging duodenoscope," IEEE Trans. Biomed. Engng., Vol. 60, 3458-3467, 2013.
doi:10.1109/TBME.2013.2271045 Google Scholar
7. Kantor, H. L., R. W. Briggs, and R. S. Balaban, "In vivo 31P nuclear magnetic resonance measurements in canine heart using a catheter-coil," Circ. Res., Vol. 55, 261-266, 1984.
doi:10.1161/01.RES.55.2.261 Google Scholar
8. Martin, P. J., D. B. Plewes, and R. M. Henkelman, "MR imaging of blood vessels with an intravascular coil," J. Magn. Reson. Imag., Vol. 2, 421-429, 1992.
doi:10.1002/jmri.1880020411 Google Scholar
9. Atalar, E., P. A. Bottomley, O. Ocali, L. C. L. Correia, M. D. Kelemen, J. A. C. Lima, and E. A. Zerhouni, "High resolution intravascular MRI and MRS by using a catheter receiver coil," Magn. Reson. Med., Vol. 36, 596-605, 1996.
doi:10.1002/mrm.1910360415 Google Scholar
10. Bottomley, P. A., E. Atalar, R. F. Lee, K. A. Shunk, and A. Lardo, "Cardiovascular MRI probes for the outside in and for the inside out," Magn. Reson. Mats. Phys. Biol. Med., Vol. 11, 49-51, 2000.
doi:10.1007/BF02678493 Google Scholar
11. Duerk, J. L., E. Y. Wong, and J. S. Lewin, "A brief review of hardware for catheter tracking in magnetic resonance imaging," MAGMA, Vol. 13, 199-208, 2002.
doi:10.1016/S1352-8661(01)00150-8 Google Scholar
12. Boskamp, E., "Improved surface coil imaging in MRI: Decoupling of the excitation and receiver coils," Radiology, Vol. 157, 449-452, 1985.
doi:10.1148/radiology.157.2.4048454 Google Scholar
13. Nitz, W. R., A. Oppelt, W. Renz, C. Manke, M. Lenhart, and J. Link, "On the heating of linear conductive structures as guidewires and catheters in interventional MRI," J. Magn. Reson. Imag., Vol. 13, 105-114, 2001.
doi:10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0 Google Scholar
14. Atalar, E., "Safe coaxial cables," Proc. 7th Ann. Meet. ISMRM, 1006, Philadelphia, PA, USA, May 24–28, 1999. Google Scholar
15. Ladd, M. E. and H. H. Quick, "Reduction of resonant RF heating in intravascular catheters using coaxial chokes," Magn. Reson. Med., Vol. 43, 615-619, 2000.
doi:10.1002/(SICI)1522-2594(200004)43:4<615::AID-MRM19>3.0.CO;2-B Google Scholar
16. Vernickel, P., V. Schulz, S. Weiss, and B. Gleich, "A safe transmission line for MRI," IEEE Trans. Biomed. Engng., Vol. 52, 1094-1102, 2005.
doi:10.1109/TBME.2005.846713 Google Scholar
17. Krafft, A., S. Muller, R. Umathum, W. Semmler, and M. Bock, "B1 field-insensitive transformers for RF-safe transmission lines," Magn. Reson. Mater. Phys., Vol. 19, 257-266, 2006.
doi:10.1007/s10334-006-0055-x Google Scholar
18. Wiltshire, M. C. K., J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, "Metamaterial endoscope for magnetic field transfer: Near field imaging with magnetic wires," Optics Express, Vol. 11, 709-714, 2003.
doi:10.1364/OE.11.000709 Google Scholar
19. Freire, M. J. and R. Marques, "Planar magnetoinductive lens for three-dimensional subwavelength imaging," Appl. Phys. Letts., Vol. 86, art. 182505, 2005.
doi:10.1063/1.1922074 Google Scholar
20. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μr = −1 metamaterial lens for magnetic resonance imaging," Appl. Phys. Lett., Vol. 93, 231108, 2008.
doi:10.1063/1.3043725 Google Scholar
21. Schelekova, A. V., A. P. Slobozhanyuk, S. B. Glybovski, et al. "Application of metasurfaces for magnetic resonance imaging," Proc. 10th Metamaterials Conf., 13-14, Platanias, Crete, Sept. 17– 22, 2016. Google Scholar
22. Slobozhanyuk, A. P., A. N. Poddubny, A. J. E. Raaijmakers, et al. "Enhancement of magnetic resonance imaging with metasurfaces," Adv. Mats., Vol. 28, 1832-1838, 2016.
doi:10.1002/adma.201504270 Google Scholar
23. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110 Google Scholar
24. Radu, X., D. Garray, and C. Craeye, "Towards a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005 Google Scholar
25. Belov, P. A., G. K. Palikaras, Y. Zhao, et al. "Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with sub-wavelength resolution," Appl. Phys. Lett., Vol. 97, 191905, 2010.
doi:10.1063/1.3516161 Google Scholar
26. Syms, R. R. A., I. R. Young, M. M. Ahmad, and M. Rea, "Magnetic resonance imaging with linear magneto-inductive waveguides," J. Appl. Phys., Vol. 112, 114911, 2012.
doi:10.1063/1.4768281 Google Scholar
27. Syms, R. R. A., I. R. Young, M. M. Ahmad, S. D. Taylor-Robinson, and M. Rea, "Magnetoinductive catheter receiver for magnetic resonance imaging," IEEE Trans. Biomed. Engng., Vol. 60, 2421-2431, 2013.
doi:10.1109/TBME.2013.2258020 Google Scholar
28. Segkhoonthod, K., R. R. A. Syms, and I. R. Young, "Design of magneto-inductive magnetic resonance imaging catheters," IEEE Sensors J., Vol. 14, 1505-1513, 2014.
doi:10.1109/JSEN.2013.2296852 Google Scholar
29. Kardoulaki, E., R. R. A. Syms, I. R. Young, and M. Rea, "SNR in MI catheter receivers for MRI," IEEE Sensors J., Vol. 16, 1700-1707, 2016.
doi:10.1109/JSEN.2015.2500226 Google Scholar
30. Syms, R. R. A., I. R. Young, L. Solymar, and T. Floume, "Thin-film magneto-inductive cables," J. Phys. D. Appl. Phys., Vol. 43, 055102, 2010.
doi:10.1088/0022-3727/43/5/055102 Google Scholar
31. Syms, R. R. A., L. Solymar, and I. R. Young, "Broad-band coupling transducers for magnetoinductive cable," J. Phys. D. Appl. Phys., Vol. 43, 285003, 2010.
doi:10.1088/0022-3727/43/28/285003 Google Scholar
32. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magneto-inductive waveguide," Elect. Lett., Vol. 38, 371-373, 2002.
doi:10.1049/el:20020258 Google Scholar
33. Wiltshire, M. C. K., E. Shamonina, I. R. Young, and L. Solymar, "Dispersion characteristics of magneto-inductive waves: Comparison between theory and experiment," Elect. Lett., Vol. 39, 215-217, 2003.
doi:10.1049/el:20030138 Google Scholar
34. Hoult, D. I. and R. E. Richards, "The signal-to-noise ratio of the nuclear magnetic resonance experiment," J. Magn. Reson., Vol. 24, 71-85, 1976. Google Scholar