Vol. 159
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-09-14
Magneto-Inductive Magnetic Resonance Imaging Duodenoscope
By
Progress In Electromagnetics Research, Vol. 159, 125-138, 2017
Abstract
A magnetic resonance imaging (MRI) duodenoscope is demonstrated, by combining non-magnetic endoscope components with a thin-film receiver based on a magneto-inductive waveguide. The waveguide elements consist of figure-of-eight shaped inductors formed on either side of a flexible substrate and parallel plate capacitors that use the substrate as a dielectric. Operation is simulated using equivalent circuit models and by computation of two- and three-dimensional sensitivity patterns. Circuits are fabricated for operation at 127.7 MHz by double-sided patterning of copper-clad Kapton and assembled onto non-magnetic flexible endoscope insertion tubes. Operation is verified by bench testing and by 1H MRI at 3T using phantoms. The receiver can form a segmented coaxial image along the length of the endoscope, even when bent, and shows a signal-to-noise-ratio advantage over a surface array coil up to three times the tube diameter at the tip. Initial immersion imaging experiments have been carried out and confirm an encouraging lack of sensitivity to RF heating.
Citation
Richard R. A. Syms Evdokia Kardoulaki Marc Rea Kaushal Choonee Simon Taylor-Robinson Christopher Wadsworth Ian R. Young , "Magneto-Inductive Magnetic Resonance Imaging Duodenoscope," Progress In Electromagnetics Research, Vol. 159, 125-138, 2017.
doi:10.2528/PIER17062104
http://www.jpier.org/PIER/pier.php?paper=17062104
References

1. Hoult, D. I. and P. C. Lauterbur, "The sensitivity of the zeugmatographic experiment involving human samples," J. Magn. Reson., Vol. 34, 425-433, 1979.

2. Ocali, O. and E. Atalar, "Ultimate intrinsic signal-to-noise ratio in MRI," Magn. Reson. Med., Vol. 39, 462-473, 1988.
doi:10.1002/mrm.1910390317

3. Eryaman, Y., Y. Oner, and E. Atalar, "Design of internal coils using ultimate intrinsic SNR," Magn. Reson. Mater. Phys., Vol. 22, 221-228, 2009.
doi:10.1007/s10334-009-0167-1

4. Inui, K., et al., "Endoscopic MRI: Preliminary results of a new technique for visualization and staging of gastrointestinal tumors," Endoscopy, Vol. 27, 480-485, 1995.
doi:10.1055/s-2007-1005752

5. Gilderdale, D. J., A. D. Williams, U. Dave, and N. M. de Souza, "An inductively-coupled, detachable receiver coil system for use with magnetic resonance compatible endoscopes," JMRI, Vol. 18, 131-135, 2003.
doi:10.1002/jmri.10321

6. Syms, R. R. A., I. R. Young, C. A. Wadsworth, S. D. Taylor-Robinson, and M. Rea, "Magnetic resonance imaging duodenoscope," IEEE Trans. Biomed. Engng., Vol. 60, 3458-3467, 2013.
doi:10.1109/TBME.2013.2271045

7. Kantor, H. L., R. W. Briggs, and R. S. Balaban, "In vivo 31P nuclear magnetic resonance measurements in canine heart using a catheter-coil," Circ. Res., Vol. 55, 261-266, 1984.
doi:10.1161/01.RES.55.2.261

8. Martin, P. J., D. B. Plewes, and R. M. Henkelman, "MR imaging of blood vessels with an intravascular coil," J. Magn. Reson. Imag., Vol. 2, 421-429, 1992.
doi:10.1002/jmri.1880020411

9. Atalar, E., P. A. Bottomley, O. Ocali, L. C. L. Correia, M. D. Kelemen, J. A. C. Lima, and E. A. Zerhouni, "High resolution intravascular MRI and MRS by using a catheter receiver coil," Magn. Reson. Med., Vol. 36, 596-605, 1996.
doi:10.1002/mrm.1910360415

10. Bottomley, P. A., E. Atalar, R. F. Lee, K. A. Shunk, and A. Lardo, "Cardiovascular MRI probes for the outside in and for the inside out," Magn. Reson. Mats. Phys. Biol. Med., Vol. 11, 49-51, 2000.
doi:10.1007/BF02678493

11. Duerk, J. L., E. Y. Wong, and J. S. Lewin, "A brief review of hardware for catheter tracking in magnetic resonance imaging," MAGMA, Vol. 13, 199-208, 2002.
doi:10.1016/S1352-8661(01)00150-8

12. Boskamp, E., "Improved surface coil imaging in MRI: Decoupling of the excitation and receiver coils," Radiology, Vol. 157, 449-452, 1985.
doi:10.1148/radiology.157.2.4048454

13. Nitz, W. R., A. Oppelt, W. Renz, C. Manke, M. Lenhart, and J. Link, "On the heating of linear conductive structures as guidewires and catheters in interventional MRI," J. Magn. Reson. Imag., Vol. 13, 105-114, 2001.
doi:10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0

14. Atalar, E., "Safe coaxial cables," Proc. 7th Ann. Meet. ISMRM, 1006, Philadelphia, PA, USA, May 24–28, 1999.

15. Ladd, M. E. and H. H. Quick, "Reduction of resonant RF heating in intravascular catheters using coaxial chokes," Magn. Reson. Med., Vol. 43, 615-619, 2000.
doi:10.1002/(SICI)1522-2594(200004)43:4<615::AID-MRM19>3.0.CO;2-B

16. Vernickel, P., V. Schulz, S. Weiss, and B. Gleich, "A safe transmission line for MRI," IEEE Trans. Biomed. Engng., Vol. 52, 1094-1102, 2005.
doi:10.1109/TBME.2005.846713

17. Krafft, A., S. Muller, R. Umathum, W. Semmler, and M. Bock, "B1 field-insensitive transformers for RF-safe transmission lines," Magn. Reson. Mater. Phys., Vol. 19, 257-266, 2006.
doi:10.1007/s10334-006-0055-x

18. Wiltshire, M. C. K., J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, "Metamaterial endoscope for magnetic field transfer: Near field imaging with magnetic wires," Optics Express, Vol. 11, 709-714, 2003.
doi:10.1364/OE.11.000709

19. Freire, M. J. and R. Marques, "Planar magnetoinductive lens for three-dimensional subwavelength imaging," Appl. Phys. Letts., Vol. 86, art. 182505, 2005.
doi:10.1063/1.1922074

20. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μr = −1 metamaterial lens for magnetic resonance imaging," Appl. Phys. Lett., Vol. 93, 231108, 2008.
doi:10.1063/1.3043725

21. Schelekova, A. V., et al., "Application of metasurfaces for magnetic resonance imaging," Proc. 10th Metamaterials Conf., 13-14, Platanias, Crete, Sept. 17– 22, 2016.

22. Slobozhanyuk, A. P., et al., "Enhancement of magnetic resonance imaging with metasurfaces," Adv. Mats., Vol. 28, 1832-1838, 2016.
doi:10.1002/adma.201504270

23. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

24. Radu, X., D. Garray, and C. Craeye, "Towards a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005

25. Belov, P. A., et al., "Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with sub-wavelength resolution," Appl. Phys. Lett., Vol. 97, 191905, 2010.
doi:10.1063/1.3516161

26. Syms, R. R. A., I. R. Young, M. M. Ahmad, and M. Rea, "Magnetic resonance imaging with linear magneto-inductive waveguides," J. Appl. Phys., Vol. 112, 114911, 2012.
doi:10.1063/1.4768281

27. Syms, R. R. A., I. R. Young, M. M. Ahmad, S. D. Taylor-Robinson, and M. Rea, "Magnetoinductive catheter receiver for magnetic resonance imaging," IEEE Trans. Biomed. Engng., Vol. 60, 2421-2431, 2013.
doi:10.1109/TBME.2013.2258020

28. Segkhoonthod, K., R. R. A. Syms, and I. R. Young, "Design of magneto-inductive magnetic resonance imaging catheters," IEEE Sensors J., Vol. 14, 1505-1513, 2014.
doi:10.1109/JSEN.2013.2296852

29. Kardoulaki, E., R. R. A. Syms, I. R. Young, and M. Rea, "SNR in MI catheter receivers for MRI," IEEE Sensors J., Vol. 16, 1700-1707, 2016.
doi:10.1109/JSEN.2015.2500226

30. Syms, R. R. A., I. R. Young, L. Solymar, and T. Floume, "Thin-film magneto-inductive cables," J. Phys. D. Appl. Phys., Vol. 43, 055102, 2010.
doi:10.1088/0022-3727/43/5/055102

31. Syms, R. R. A., L. Solymar, and I. R. Young, "Broad-band coupling transducers for magnetoinductive cable," J. Phys. D. Appl. Phys., Vol. 43, 285003, 2010.
doi:10.1088/0022-3727/43/28/285003

32. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magneto-inductive waveguide," Elect. Lett., Vol. 38, 371-373, 2002.
doi:10.1049/el:20020258

33. Wiltshire, M. C. K., E. Shamonina, I. R. Young, and L. Solymar, "Dispersion characteristics of magneto-inductive waves: Comparison between theory and experiment," Elect. Lett., Vol. 39, 215-217, 2003.
doi:10.1049/el:20030138

34. Hoult, D. I. and R. E. Richards, "The signal-to-noise ratio of the nuclear magnetic resonance experiment," J. Magn. Reson., Vol. 24, 71-85, 1976.