1. Yan, S., J.-M. Jin, C.-F. Wang, and J. D. Kotulski, "Numerical study of a time-domain finite element method for nonlinear magnetic problems in three dimensions (invited paper)," Progress In Electromagnetics Research, Vol. 153, 69-91, 2015.
doi:10.2528/PIER15091006 Google Scholar
2. Yan, S. and J.-M. Jin, "Theoretical formulation of a time-domain finite element method for nonlinear magnetic problems in three dimensions (invited paper)," Progress In Electromagnetics Research, Vol. 153, 33-55, 2015.
doi:10.2528/PIER15091005 Google Scholar
3. Pries, J. and H. Hofmann, "Steady-state algorithms for nonlinear time-periodic magnetic diffusion problems using diagonally implicit Runge-Kutta methods," IEEE Trans. Magn., Vol. 51, No. 4, 1-12, Apr. 2015.
doi:10.1109/TMAG.2014.2344005 Google Scholar
4. Zhou, P., W. N. Fu, D. Lin, S. Stanton, and Z. J. Cendes, "Numerical modeling of magnetic devices," IEEE Transactions on Magnetics, Vol. 40, No. 4, 1803, 2004.
doi:10.1109/TMAG.2004.830511 Google Scholar
5. Demerdash, N. A., J. F. Bangura, and A. A. Arkadan, "A time-stepping coupled finite elementstate space model for induction motor drives — Part 1: Model formulation and machine parameter computation," IEEE Trans. Energy Conversion, Vol. 14, 1465-1471, Dec. 1999.
doi:10.1109/60.815091 Google Scholar
6. Pries, J., Computationally efficient steady-state simulation algorithms for finite-element models of electric machines, Ph.D. Dissertation, University of Michigan, 2015.
7. Kumbhar, A., K. Chakravarthy, R. Keshavamurthy, and G. V. Rao, "Utilization of parallel solver libraries to solve structural and fluid problems," Intel Math Kernel Library — White Papers, 2011. Google Scholar
8. Takahashi, Y., T. Tokumasu, M. Fujita, T. Iwashita, H. Nakashima, S. Wakao, and K. Fujiwara, "Time-domain parallel finite-element method for fast magnetic field analysis of induction motors," IEEE Trans. Magn., Vol. 49, No. 5, 2413-2416, May 2013.
doi:10.1109/TMAG.2013.2245114 Google Scholar
9. Benzi, M., "Preconditioning techniques for large linear systems: A survey," J. Computat. Phys., Vol. 182, 418-477, 2002.
doi:10.1006/jcph.2002.7176 Google Scholar
10. He, B., P. Zhou, C. Lu, N. Chen, D. Lin, M. Rosu, and B. Bork, "A time decomposition method for the transient simulation of low-frequency electromagnetics," Proc. 17th Biennial IEEE CEFC, Miami, FL, USA, WO23-5, 2016. Google Scholar
11. Kriezis, E. E., T. D. Tsiobukis, S. M. Panas, and J. A. Tegopoulos, "Eddy currents: Theory and applications," Proc. IEEE, Vol. 80, 1559-1589, Oct. 1992. Google Scholar
12. Davis, T. A., Direct Methods for Sparse Linear Systems, SIAM, 2006.
doi:10.1137/1.9780898718881
13. Van der Vorst, H. A., Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, 2003.
doi:10.1017/CBO9780511615115
14. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 7, No. 3, 856-869, 1986.
doi:10.1137/0907058 Google Scholar
15. Gropp, W., E. Lusk, N. Doss, and A. Skjellum, "A high-performance portable implementation of the MPI message-passing interface standard," Parallel Computing, Vol. 22, No. 6, 789-828, 1996.
doi:10.1016/0167-8191(96)00024-5 Google Scholar