Vol. 160
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-10-25
Broadband Generation of Orbital Angular Momentum Carrying Beams in RF Regimes
By
Progress In Electromagnetics Research, Vol. 160, 19-27, 2017
Abstract
We propose a novel approach for the broadband generation of orbital angular momentum (OAM) carrying beams based on the Archimedean spiral. The mechanism behind the antenna is theoretically analyzed and further validated by numerical simulation and physical measurement. The results show that the spiral-based antenna is able to reliably generate the OAM carrying beams in an ultra-wide frequency band. Of particular interest is the fact that the mode number of radiated beams is reconfigurable with a change in operating frequency. Prototypes of a single-arm spiral antenna (SASA), a multi-arm spiral antenna (MASA), and a compact multi-arm spiral antenna (CMASA) are investigated and demonstrated to support our arguments. The proposed approach provides an effective and competitive way to generate OAM carrying beams in radio and microwave bands, which may have potential in wireless communication applications due to its characteristics of simplicity, broadband capacity and reconfiguration opportunities.
Citation
Fuchun Mao Ming Huang Tinghua Li Jialin Zhang Chengfu Yang , "Broadband Generation of Orbital Angular Momentum Carrying Beams in RF Regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.
doi:10.2528/PIER17082302
http://www.jpier.org/PIER/pier.php?paper=17082302
References

1. Krenn, M., M. Malik, M. Erhard, and A. Zeilinger, "Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes," Phil. Trans. R. Soc. A, Vol. 375, 20150442, 2017.
doi:10.1098/rsta.2015.0442

2. McMorran, B. J., A. Agrawal, P. A. Ercius, V. Grillo, A. A. Herzing, T. R. Harvey, M. Linck, and J. S. Pierce, "Origins and demonstrations of electrons with orbital angular momentum," Phil. Trans. R. Soc. A, Vol. 375, 20150434, 2017.
doi:10.1098/rsta.2015.0434

3. Shiloh, R., Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, "Unveiling the orbital angular momentum and acceleration of electron beams," Phys. Rev. Lett., Vol. 114, No. 9, 096102, 2015.
doi:10.1103/PhysRevLett.114.096102

4. Ritsch-Marte, M., "Orbital angular momentum light in microscopy," Phil. Trans. R. Soc. A, Vol. 375, 20150437, 2017.
doi:10.1098/rsta.2015.0437

5. Fischer, P., "X-ray imaging of magnetic structures," IEEE Transactions on Magnetics, Vol. 51, No. 2, 1-31, 2015.
doi:10.1109/TMAG.2014.2363054

6. Clark, C. W., R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, "Controlling neutron orbital angular momentum," Nature, Vol. 525, No. 7570, 504-506, 2015.
doi:10.1038/nature15265

7. Uribe-Patarroyo, N., A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, "Object identification using correlated orbital angular momentum states," Phys. Rev. Lett., Vol. 110, No. 4, 043601, 2013.
doi:10.1103/PhysRevLett.110.043601

8. Padgett, M. and R. Bowman, "Tweezers with a twist," Nat. Photonics, Vol. 5, No. 6, 343-348, 2011.
doi:10.1038/nphoton.2011.81

9. Yuan, Y., T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, "Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams," Scientific Reports, Vol. 7, 2017.

10. Ren, Y., L. Li, G. Xie, Y. Yan, Y. Cao, H. Huang, N. Ahmed, Z. Zhao, P. Liao, C. Zhang, G. Caire, A. F. Molisch, M. Tur, and A. E. Willner, "Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing," IEEE Transactions on Wireless Communications, 2017.

11. Yu, S., "Potentials and challenges of using orbital angular momentum communications in optical interconnects," Optics Express, Vol. 23, No. 3, 3075-3087, 2015.
doi:10.1364/OE.23.003075

12. Bozinovic, N., Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, No. 6140, 1545-1548, 2013.
doi:10.1126/science.1237861

13. Devlin, R. C., A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, "Spin-to-orbital angular momentum conversion in dielectric metasurfaces," Optics Express, Vol. 25, No. 1, 377-393, 2017.
doi:10.1364/OE.25.000377

14. Cai, X., J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, "Integrated compact optical vortex beam emitters," Science, Vol. 338, No. 6105, 363-366, 2012.
doi:10.1126/science.1226528

15. Zhang, C., L. Deng, W. J. Hong, W. X. Jiang, J. F. Zhu, M. Zhou, L. Wang, S. F. Li, and B. Peng, "Three-dimensional simultaneous arbitrary-way orbital angular momentum generator based on transformation optics," Scientific Reports, Vol. 6, 2016.

16. Lei, T., M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Li Z., C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, "Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings," Light: Science & Applications, Vol. 4, e257, 2015.
doi:10.1038/lsa.2015.30

17. Li, S. and Z. Wang, "Generation of optical vortex based on computer-generated holographic gratings by photolithography," Appl. Phys. Lett., Vol. 103, No. 14, 141110, 2013.
doi:10.1063/1.4823596

18. Dall, R., M. D. Fraser, A. S. Desyatnikov, G. Li, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, and E. A. Ostrovskaya, "Creation of orbital angular momentum states with chiral polaritonic lenses," Phys. Rev. Lett., Vol. 113, No. 20, 200404, 2014.
doi:10.1103/PhysRevLett.113.200404

19. Niederriter, R. D., M. E. Siemens, and J. T. Gopinath, "Continuously tunable orbital angular momentum generation using a polarization-maintaining fiber," Optics Letters, Vol. 41, No. 14, 3213-3216, 2016.
doi:10.1364/OL.41.003213

20. Gambini, F., P. Velha, C. J. Oton, and S. Faralli, "Orbital angular momentum generation with ultra-compact bragg-assisted silicon microrings," IEEE Photonics Technology Letters, Vol. 28, No. 21, 2355-2358, 2016.
doi:10.1109/LPT.2016.2594030

21. Thide, B., H. Then, J. Sj¨oholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the lowfrequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701

22. Mohammadi, S. M., L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio — A system study," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

23. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001

24. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

25. Zheng, S., X. Hui, X. Jin, H. Chi, and X. Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1530-1536, 2015.
doi:10.1109/TAP.2015.2393885

26. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 12, 121903, 2016.
doi:10.1063/1.4944789

27. Wei, W., K. Mahdjoubi, C. Brousseau, and O. Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electronics Letters, Vol. 51, No. 6, 442-443, 2015.
doi:10.1049/el.2014.4425

28. Chen, J. J., Q. N. Lu, F. F. Dong, J. J. Yang, and M. Huang, "Wireless OAM transmission system based on elliptical microstrip patch antenna," Optics Express, Vol. 24, No. 11, 11531-11538, 2016.
doi:10.1364/OE.24.011531

29. Hui, X., S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientific Reports, Vol. 5, 10148, 2015.
doi:10.1038/srep10148

30. Yu, S., L. Li, G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.
doi:10.1063/1.4953786

31. Kaiser, J. A., "The Archimedean two-wire spiral antenna," IRE Transactions on Antennas & Propagation, Vol. 8, No. 3, 312-323, 1960.
doi:10.1109/TAP.1960.1144840

32. Nakano, H., R. Satake, and J. Yamauchi, "Extremely low-profile, single-arm, wideband spiral antenna radiating a circularly polarized wave," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1511-1520, 2010.
doi:10.1109/TAP.2010.2044345

33. Mcfadden, M. and W. R. Scott, "Analysis of the equiangular spiral antenna on a dielectric substrate," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3163-3171, 2007.
doi:10.1109/TAP.2007.908838