1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. Yablonovitch, E. and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case," Phys. Rev. Lett., Vol. 63, 18, 1989. Google Scholar
3. Oliner, A. A., "Periodic structure and photonic band-gap terminology: Historical perspectives," IEEE 29th European Microwave Conference, Vol. 3, 295-298, 1999. Google Scholar
4. Radisic, V., Y. Qian, and T. Itoh, "Broad-band power amplifier integrated with slot antenna and novel harmonic tuning structure," IEEE MTT-S Microwave Symp. Dig., 1895-1898, Baltimore, MD, June 7–12, 1998. Google Scholar
5. De Maagt, P., R. Gonzalo, J. Vardaxoglou, and J.-M. Baracco, "Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566 Google Scholar
6. Chappell, W. J. and X. Gong, "Wide bandgap composite EBG substrates," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2744-2750, 2003.
doi:10.1109/TAP.2003.817569 Google Scholar
7. Euler, T. and J. Papapolymerou, "Silicon micromachined EBG resonator and two-pole filter with improved performance characteristics," IEEE Microwave and Wireless Components Lett., Vol. 13, No. 9, 373-375, 2003.
doi:10.1109/LMWC.2003.817132 Google Scholar
8. Hsu, H., M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, "A duroid-based planar EBG cavity resonator filter with improved quality factor," IEEE Antennas and Wireless Propagation Lett., Vol. 1, No. 6, 67-70, 2002. Google Scholar
9. Fu, Y.-Q., G.-H. Zhang, and N.-C. Yuan, "A novel PBG coplanar waveguide," IEEE Microwave and Wireless Components Lett., Vol. 11, No. 11, 447-449, 2001.
doi:10.1109/7260.966037 Google Scholar
10. Mukherjee, B., V. D. Kumar, and M. Gupta, "A novel hemispherical dielectric resonator antenna on an electromagnetic band gap substrate for broadband and high gain systems," AEU — International Journal of Electronics and Communication, Vol. 68, 1185-1190, Elsevier, 2014. Google Scholar
11. Mukherjee, B., S. Tiwari, and A. L. Samariya, "Improvement in Radiation losses of Spur Line Resonators based LPF on an EBG substrate," International Journal of Applied Electromagnetics and Mechanics, Vol. 41, No. 4, 447-455, IOS Press, 2013. Google Scholar
12. Mukherjee, B., A. L. Samariya, and S. Tiwari, "Improvement in roll off factor of low pass filter placed on an EBG substrate," Frequenz: Journal of RF Engineering and Telecommunications, Vol. 67, No. 3–4, 73-78, February 2013. Google Scholar
13. Delustrac, A., F. Gadot, E. Akmansoy, and T. Brillat, "High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies," A Phys. Lett., Vol. 78, 4196, 2002. Google Scholar
14. Mercier, L., M. Thevenot, P. Blonby, and B. Jecko, "Design and characterization of a smart periodic material including MEMS," Proc. 27th ESA Antenna Technology Workshop on Innovative Periodic Antennas: Elecromagnetic Bandgap, Left-Handed Materials, Fractal and Frequency Selective Surfaces, Santigao de Compostela, Spain, March 2004. Google Scholar
15. Kannegulla, A., M. I. B. Shams, L. Liu, and L.-J. Cheng, "Photo-induced spatial modulation of THz waves: Opportunities and limitations," Opt. Exp., Vol. 23, No. 25, 32098-32112, 2015.
doi:10.1364/OE.23.032098 Google Scholar
16. Kannegulla, A., et al. "Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams," IEEE Trans. THz Sci. Technol., Vol. 4, No. 3, 321-327, May 2014.
doi:10.1109/TTHZ.2014.2307163 Google Scholar
17. Shams, M. I. B., Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, "A Terahertz reconfigurable photo-induced fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming," International Microwave Symposium, 1-4, Phoenix, Arizona, 2015. Google Scholar
18. Jiang, Z., M. I. B. Shams, L.-J. Cheng, P. Fay, J. L. Hesler, C. E. Tong, and L. Liu, "Investigation and demonstration of a WR-4.3 optically-controlled waveguide attenuator," IEEE Trans. THz Sci. Technol., Vol. 7, No. 1, 20-26, 2017. Google Scholar
19. Platte, W., "LED-induced distributed Bragg reflection microwave filter with fiber-optically controlled change of center frequency via photoconductivity gratings," IEEE Trans. Microwave Theory and Techniques, Vol. 39, No. 2, 359-363, 1991.
doi:10.1109/22.102986 Google Scholar
20. Vardaxoglou, J. C., D. S. Lockyer, Y. L. R. Lee, and A. Chauraya, "Photonic bandgap and bandpass characteristics from metallodielectric periodic array structures," Proc. 24th ESA Antenna Technology Workshop on Innovative Periodic Antennas: Elecromagnetic Bandgap, Left-Handed Materials, Fractal and Frequency Selective Surfaces, Noordwijk, The Netherlands, June 2001. Google Scholar
21. Ulbricht, R., et al. "Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy," Rev. Modern Phys., Vol. 83, No. 2, 543-586, 2011.
doi:10.1103/RevModPhys.83.543 Google Scholar
22. Pierretand, R. F. and G. W. Neudeck, "Recombination-generation processes," Advanced Semiconductor Fundamentals, 2nd Edition, Vol. 6, 134-140, Addison-Wesley, Reading, MA, USA, 1987. Google Scholar
23. Liu, L., et al. "Tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication," Proc. SPIE, 9934, Terahertz Emitters, Receivers, and Applications VII, 993407, 2016. Google Scholar
24. Palik, E. D., Handbook of Optical Constants of Solids, Academia, 1988.
25. Sze, S. M., Physics of Semiconductor Devices, Wiley Publishers, 1981.
26. Koshiba, M., Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," J. Lightwave Technol., Vol. 18, 102-110, 2000.
doi:10.1109/50.818913 Google Scholar
27. Koshiba, M., "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol., Vol. 19, 170-175, 2001. Google Scholar
28. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, 2772-2775, 1992.
doi:10.1103/PhysRevLett.69.2772 Google Scholar
29. Pendry, J. B., "Photonic band structures," Journal of Modern Optics, Vol. 41, 209-229, 1994.
doi:10.1080/09500349414550281 Google Scholar
30. http://www.rogerscorp.com/documents/612/index.aspx.
31. Hao, Z.-C., W. Hong, J.-X. Chen, and K. Wu, "Compact super-wide bandpass substrate integrated waveguide (SIW) filters," IEEE Trans. Microwave Theory and Tech., Vol. 53, No. 9, September 2005. Google Scholar
32. Cassivi, Y. and K. Wu, "NRD-guide spurious mode suppressor using self-contained periodic planar EBG structure," IEEE Proc. APMC, 659-662, Taipei, 2001. Google Scholar
33. Gong, X., W. J. Chapper, and L. P. B. Katehi, "Reduced size capacitive defect EBG resonator," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1091-1094, June 2002. Google Scholar
34. Tuckerman, D. B. and R. F. W. Pease, "High-performance heat sinking for VLSI," IEEE Electron Device Letters, Vol. edl-2, No. 5, 126-129, May 1981.
doi:10.1109/EDL.1981.25367 Google Scholar
35. Chu, R. C., R. E. Simons, M. J. Ellsworth, R. R. Schmidt, and V. Cozzolino, "Review of cooling technologies for computer products," IEEE Trans. Device and Materials Reliability, Vol. 4, No. 4, 568-585, December 2004.
doi:10.1109/TDMR.2004.840855 Google Scholar
36. Bottner, H., J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, and K.-H. Schlereth, "New thermoelectric components using microsystem technologies," Journal of Microelectromechanical Systems, Vol. 13, No. 3, 414-420, June 2004.
doi:10.1109/JMEMS.2004.828740 Google Scholar
37. Lindblom, M., J. Reinspach, O. von Hofsten, M. Bertilson, H. M. Hertz, and A. Holmberg, "Highaspect-ratio germanium zone plates fabricated by reactive ion etching in chlorine," J. Vac. Sci. Technol. B, Vol. 27, No. 2, L1-L3, March/April 2009.
doi:10.1116/1.3089371 Google Scholar