1. Kajiwara, A., "Line-of-sight indoor radio communication using circularly polarized waves," IEEE Trans. Veh. Technol., Vol. 44, No. 3, 487-493, 1995.
doi:10.1109/25.406616 Google Scholar
2. Young, L., L. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Trans. Antennas and Propa., Vol. 21, No. 3, 376-378, 1973.
doi:10.1109/TAP.1973.1140503 Google Scholar
3. Huang, Y. H., Y. Zhou, and S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Optics Express, Vol. 15, No. 10, 6414-6419, 2007.
doi:10.1364/OE.15.006414 Google Scholar
4. Chen, H., J. Wang, and H. Ma, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, No. 15, 154504, 2014.
doi:10.1063/1.4869917 Google Scholar
5. Gao, X., X. Han, and W. P. Cao, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas & Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392 Google Scholar
6. Sui, S., H. Ma, J. Wang, et al. "Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces," Applied Physics Letters, Vol. 109, No. 1, 063908, 2016.
doi:10.1063/1.4955412 Google Scholar
7. Khan, M. I., Q. Fraz, and F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," Journal of Applied Physics, Vol. 121, No. 4, 045103, 2017.
doi:10.1063/1.4974849 Google Scholar
8. Su, P., Y. Zhao, S. Jia, et al. "An ultra-wideband and polarization-independent metasurface for RCS reduction," Scientific Reports, Vol. 6, 20387, 2016. Google Scholar
9. Zhao, J. and Y. Cheng, "A high-efficiency and broad band reflective 90 linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6 Google Scholar
10. Cheng, Y. Z., C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, "Design of an ultra-broad band and high-efficient reflective linear polarization convertor at optical frequency," IEEE Photonics Journal, Vol. 8, 7805509, 2016. Google Scholar
11. Sun, H., C. Gu, X. Chen, et al. "Ultra-wideband and broad-angle linear polarization conversion metasurface," Journal of Applied Physics, Vol. 121, No. 17, 1304-1404, 2017.
doi:10.1063/1.4982916 Google Scholar
12. Zhao, J. C. and Y. Z. Cheng, "Ultra-broad band and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik — International Journal for Light and Electron Optics, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006 Google Scholar
13. Fang, C., Y. Cheng, Z. He, J. Zhao, and R. Gong, "Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface,", Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002 Google Scholar
14. Xu, P., S. Y. Wang, and G. Wen, "A linear polarization converter with near unity efficiency in microwave regime," Journal of Applied Physics, Vol. 121, No. 14, 1804-1949, 2017.
doi:10.1063/1.4979880 Google Scholar
15. Xu, K. K., Z. Y. Xiao, and J. Y. Tang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.
doi:10.1016/j.physe.2016.03.015 Google Scholar
16. Zhou, G., X. Tao, Z. Shen, et al. "Designing perfect linear polarization converters using perfect electric and magnetic conducting surfaces," Scientific Reports, Vol. 6, 38925, 2016.
doi:10.1038/srep38925 Google Scholar
17. Huang, C., Y. Feng, J. Zhao, et al. "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Physical Review B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131 Google Scholar
18. Huang, X., D. Yang, S. Yu, et al. "Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial," Applied Physics B, Vol. 117, No. 2, 633-638, 2014.
doi:10.1007/s00340-014-5876-0 Google Scholar
19. Xu, Y., Q. Shi, Z. Zhu, et al. "Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial," Optics Express, Vol. 22, No. 21, 25679, 2014.
doi:10.1364/OE.22.025679 Google Scholar
20. Liu, D., Z. Xiao, X. Ma, et al. "Dual-band asymmetric transmission of chiral metamaterial based on complementary U-shaped structure," Applied Physics A, Vol. 118, No. 3, 787-791, 2015.
doi:10.1007/s00339-015-9005-7 Google Scholar
21. Fang, S., K. Luan, H. F. Ma, et al. "Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials," Journal of Applied Physics, Vol. 121, No. 3, 033103, 2017.
doi:10.1063/1.4974477 Google Scholar
22. Cheng, Y., R. Gong, and L. Wu, "Ultra-broad band linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4 Google Scholar
23. Dou, T., L. Wei, X. Ran, et al. "Broadband asymmetric transmission of linearly polarised wave based on bilayered chiral metamaterial," IET Microwaves Antennas & Propagation, Vol. 11, No. 2, 171-176, 2017.
doi:10.1049/iet-map.2016.0342 Google Scholar
24. Kuwata-Gonokami, M., N. Saito, Y. Ino, et al. "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett., Vol. 95, No. 22, 227401, 2005.
doi:10.1103/PhysRevLett.95.227401 Google Scholar
25. Yan, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, No. 10, 103503-103504, 2013.
doi:10.1063/1.4794940 Google Scholar
26. Martinez-Lopez, L., J. Rodriguez-Cuevas, J. I. Martinez-Lopez, and A. E. Martynyuk, "A multilayer circular polarizer based on bisected split-ring frequency selective surfaces," IEEE Antennas & Wireless Propagation Letters, Vol. 13, No. 2, 153-156, 2014.
doi:10.1109/LAWP.2014.2298393 Google Scholar
27. Pfeiffer, C., C. Zhang, V. Ray, et al. "High performance bianisotropic metasurfaces: Asymmetric transmission of light," Physical Review Letters, Vol. 113, No. 2, 023902, 2014.
doi:10.1103/PhysRevLett.113.023902 Google Scholar
28. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501 Google Scholar
29. Liu, Y., Y. Luo, et al. "Linear polarization to left/right-handed circular polarization conversion using ultrathin planar chiral metamaterials," Applied Physics A, Vol. 123, No. 9, 571, 2017.
doi:10.1007/s00339-017-1167-z Google Scholar
30. Baena, J. D., et al., "Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4124-4133, 2017.
doi:10.1109/TAP.2017.2717964 Google Scholar
31. Gansel, J. K., M. Thiel, M. S. Rill, et al. "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513, 2009.
doi:10.1126/science.1177031 Google Scholar
32. Gansel, J. K., M. Latzel, et al. "Tapered gold-helix metamaterials as improved circular polarizers," Appl. Phys. Lett., Vol. 100, No. 10, 101109-101109-3, 2012.
doi:10.1063/1.3693181 Google Scholar
33. Kaschke, J., L. Blume, et al. "Metamaterial for broadband circular polarization conversion," Advanced Optical Materials, Vol. 3, No. 11, 1411-1417, 2015.
doi:10.1002/adom.201500194 Google Scholar
34. Chen, M., L. J. Jiang, W. Sha, et al. "Polarization control by using anisotropic 3-D chiral structures," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4687-4694, 2016.
doi:10.1109/TAP.2016.2600758 Google Scholar
35. Ji, R., S. W. Wang, X. Liu, X. Chen, and W. Lu, "Broadband circular polarizers constructed using helix-like chiral metamaterials," Nanoscale, Vol. 8, No. 31, 14725-14729, 2016.
doi:10.1039/C6NR01738J Google Scholar