1. Chen, H. M., S. Lee, R. M. Rao, M. A. Slaman, and P. K. Varshney, "Imaging for concealed weapon detection," IEEE Signal Process. Mag., Vol. 22, No. 2, 52-61, 2005.
doi:10.1109/MSP.2005.1406480 Google Scholar
2. Sheen, D. M., D. L. Mcmakin, and T. E. Hal, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 9, 1581-1592, 2001.
doi:10.1109/22.942570 Google Scholar
3. Sheen, D. M., J. L. Fernandes, D. L. Mcmakin, and R. H. Severtsen, "Wide-bandwidth, widebeamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection," SPIE Defense, Security, and Sensing, 871509, 2013. Google Scholar
4. Zhu, Y., M. Yang, L. Wu, Y. Sun, and X. Sun, "Millimeter-wave holographic imaging algorithm with amplitude corrections," Progress In Electromagnetics Research M, Vol. 49, 33-39, 2016.
doi:10.2528/PIERM16050801 Google Scholar
5. Lowe, D. G., "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., Vol. 60, No. 2, 91-110, 2004.
doi:10.1023/B:VISI.0000029664.99615.94 Google Scholar
6. Dalal, N. and B. Triggs, "Histograms of oriented gradients for human detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 886-893, 2005. Google Scholar
7. Ren, S., K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 39, No. 6, 1137-1149, 2017.
doi:10.1109/TPAMI.2016.2577031 Google Scholar
8. Yao, J., M. Yang, Y. Zhu, L. Wu, and X. Sun, "Using convolutional neural network to localize forbidden object in millimeter-wave image," J. Infrared Millim. Waves, Vol. 36, No. 3, 354-360, 2017. Google Scholar
9. Zhu, Y., M. Yang, L. Wu, Y. Sun, and X. Sun, "Practical millimeter-wave holographic imaging system with good robustness," Chinese Opt. Lett., Vol. 14, No. 10, 43-47, 2016. Google Scholar
10. Girshick, R., J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 580-587, 2014. Google Scholar
11. Girshick, R., "Fast R-CNN," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1440-1448, 2015. Google Scholar
12. Lecun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol. 521, No. 7553, 436-444, 2015.
doi:10.1038/nature14539 Google Scholar
13. Yeom, S., D. S. Lee, J. Y. Son, and S. H. Kim, "Concealed object detection using passive millimeter wave imaging," Proc. IEEE Universal Commun. Symp., 383-386, 2010. Google Scholar
14. Xiao, Z., X. Lu, J. Yan, L. Wu, and L. Ren, "Automatic detection of concealed pistols using passive millimeter wave imaging," Proc. IEEE Int. Conf. Imaging Syst. Techn., 1-4, 2015. Google Scholar
15. Tapia, S. L., R. Molina, and N. P. Blanca, "Detection and localization of objects in Passive Millimeter Wave images," Proc. IEEE Signal Process. Conf., 2101-2105, 2016. Google Scholar
16. Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 779-788, 2016. Google Scholar
17. Redmon, J. and A. Farhadi, "YOLO9000: Better, faster, stronger," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 6517-6525, 2017. Google Scholar
18. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Proc. Neural Inform. Process. Syst., 1097-1105, 2012. Google Scholar
19. Lin, T. Y., P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for dense object detection," Proc. IEEE Int. Conf. Comput. Vis., 2999-3007, 2017. Google Scholar
20. Deng, J., W. Dong, R. Socher, and L. J. Li, "ImageNet: A large-scale hierarchical image database," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 248-255, 2009. Google Scholar
21. Rumelhart, D. E., G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," Readings in Cognitive Science, Vol. 1, No. 2, 399-421, 1988.
doi:10.1016/B978-1-4832-1446-7.50035-2 Google Scholar
22. Zeiler, M. D. and R. Fergus, "Visualizing and understanding convolutional networks," Proc. 13th Eur. Conf. Comput. Vis., 818-833, 2014. Google Scholar
23. Simonyan, K. and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Proc. Int. Conf. Learn. Representations, 2015. Google Scholar
24. He, K., X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 770-778, 2016. Google Scholar
25. Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," Proc. 22nd ACM Int. Conf. Multimedia, 675-678, 2014. Google Scholar