1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, 1-25, Wiley-Interscience Publication, 2000.
doi:10.1002/0471723770
2. Tak, J. and J. Choi, "A wearable metamaterial microwave absorber," IEEE Antennas Wireless Propag. Lett., Vol. 16, 784-787, Aug. 2016.
doi:10.1109/LAWP.2016.2604257 Google Scholar
3. Rouzegar, S. M., A. Alighanbari, and O. M. Ramahi, "Wideband uniplanar artificial magnetic conductors based on curved coupled microstrip line resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 4, 326-328, Apr. 2017.
doi:10.1109/LMWC.2017.2678434 Google Scholar
4. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem Cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305 Google Scholar
5. Zhang, J. C., Y. Z. Yin, and J. P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702 Google Scholar
6. Fu, W., J. Li, H. Wang, and X. Shen, "Polarization insensitive wide-angle triple-band metamaterial bandpass filter," 2016 Progress In Electromagnetic Research Symposium (PIERS), 4939, Shanghai, China, Aug. 8–11, 2016. Google Scholar
7. Xu, C., et al. "A novel dual-stop-band FSS for infrared stealth applications," Int. Applied Computational Electromagnetics Soc. Symp. (ACES), Suzhou, China, Aug. 1–4, 2017. Google Scholar
8. Nauman, M. and W. T. Khan, "A miniaturized dual-band stop frequency selective surface for 900MHz and 1800 MHz bands shielding," 11th European Conf. on Antennas and Propag. (EUCAP), Paris, France, Mar. 19–24, 2017. Google Scholar
9. Xiong, X., et al. "WiFi band-stop FSS for increased privacy protection in smart building," IEEE 6th Int. Symp. on Microw. Antenna Propag. and EMC Technol. (MAPE), 826-828, Shanghai, China, Oct. 28–30, 2015. Google Scholar
10. Liu, N., et al. "A design method for synthesizing wideband band-stop FSS via its equivalent circuit model," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 2721-2725, Aug. 2017.
doi:10.1109/LAWP.2017.2743114 Google Scholar
11. Yan, M., S. Qu, J. Wang, M. Feng, W. Wang, C. Xu, Z. Li, L. Zheng, and H. Zhou, "A novel miniaturized dual-stop-band FSS for Wi-Fi application," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3447-3450, Shanghai, China, Aug. 8–11, 2016. Google Scholar
12. Nisanci, M. H., et al. "Experimental validation of a 3D FSS designed by periodic conductive fibers. Part-2: Band-stop filter characteristic," IEEE Trans. on Electromagnetic Compatibility, Vol. 59, No. 6, 1835-1840, Jun. 2017.
doi:10.1109/TEMC.2017.2698835 Google Scholar
13. Li, L., J. Wang, J. Wang, H. Ma, M. Feng, M. Yan, J. Zhang, and S. Qu, "All-dielectric metamaterial band stop frequency selective surface via high-permittivity ceramics," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3324-3326, Shanghai, China, Aug. 8–11, 2016. Google Scholar
14. Fu, W., et al. "Polarization insensitive wide-angle triple-band metamaterial bandpass filter," Journal of Physics D: Applied Physics, Vol. 49, No. 28, 2016.
doi:10.1088/0022-3727/49/28/285110 Google Scholar
15. Fallah, M., A. Ghayekhloo, and A. Abdolali, "Design of frequency selective band stop shield using analytical method," Journal of Microw., Optoelectronics and Electromagnetic Applications, Vol. 14, No. 2, Dec. 2015.
doi:10.1590/2179-10742015v14i2536 Google Scholar
16. Ginestet, G., et al. "Embroidered antenna-microchip interconnections and contour antennas in passive UHF RFID textile tags," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1205-1208, Nov. 2017. Google Scholar
17. Paraskevopoulos, A., et al. "Higher-mode textile patch antenna with embroidered vias for on-body communication," IET Microw. Antennas and Propag., Vol. 10, No. 7, 802-807, May 2016.
doi:10.1049/iet-map.2015.0650 Google Scholar
18. Kiourti, A., C. Lee, and J. L. Volakis, "Fabrication of textile antennas and circuits with 0.1mm precision," IEEE Antennas Wireless Propag. Lett., Vol. 15, 151-153, May 2016.
doi:10.1109/LAWP.2015.2435257 Google Scholar
19. Wang, Z., L. Zhang, Y. Bayram, and J. L. Volakis, "Embroidered conductive fibers on polymer composite for conformal antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4141-4147, Sept. 2012.
doi:10.1109/TAP.2012.2207055 Google Scholar
20. Acti, T., et al. "Embroidered wire dipole antennas using novel copper yarns," IEEE Antennas Wireless Propag. Lett., Vol. 14, 638-64, Nov. 2015. Google Scholar
21. Senbokuya, Y. and H. Tsunoda, "A study on the circular patch antennas using conductive nonwoven fiber fabrics," IEEE Antennas Propag. Soc. Int. Symp., San Antonio, TX, USA, Jun. 16–21, 2002. Google Scholar
22. Monti, G., L. Corchia, E. De Benedetto, and L. Tarricone, "Wearable logo-antenna for GPS GSMbased tracking systems," IET Microw. Antennas and Propag., Vol. 10, No. 12, 1332-1338, Sep. 2016.
doi:10.1049/iet-map.2015.0774 Google Scholar
23. Shawl, R. K., B. R. Longj, D. H. Werner, and A. Gavrin, "The characterization of conductive textile materials intended for radio frequency applications," IEEE Antennas Propag. Mag., Vol. 49, No. 3, 28-40, Jun. 2007.
doi:10.1109/MAP.2007.4293934 Google Scholar
24. Lin, X., B. C. Seet, and F. Joseph, "Fabric antenna with body temperature sensing for BAN applications over 5G wireless systems," Int. Conf. on Sensing Technol., Auckland, New Zealand, Dec. 8–10, 2015. Google Scholar
25. Yahya, R., M. R. Kamarudin, N. Seman, and H. U. Iddi, "Eye shaped fabric antenna for UWB application," IEEE Antennas Propag. Soc. Int. Symp., Orlando, FL, Jul. 7–13, 2013. Google Scholar
26. Elmobarak Elobaid, H. A., S. K. Abdul Rahim, M. Himdi, X. Castel, and M. Abedian Kasgari, "A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1333-1336, Dec. 2016. Google Scholar
27. Whittow, W. G., et al. "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 71-74, Jan. 2014.
doi:10.1109/LAWP.2013.2295942 Google Scholar
28. Chauraya, A., et al. "Inkjet printed dipole antennas on textiles for wearable communications," IET Microw. Antennas and Propag., Vol. 7, No. 9, 760-767, Jun. 2013.
doi:10.1049/iet-map.2013.0076 Google Scholar
29. Scarpello, M. L., I. Kazani, C. Hertleer, H. Rogier, and D. Vande Ginste, "Stability and efficiency of screen-printed wearable and washable antennas," IEEE Antennas Wireless Propag. Lett., Vol. 11, 838-841, Jul. 2012. Google Scholar
30. Akbari, M., L. Sydanheimo, Y. Rahmat-Sami, J. Virkki, and L. Ukkonen, "Implementation and performance evaluation of graphene-based passive UHF RFID textile tags," Int. Symp. Electromagnetic Theory, Espoo, Finland, Aug. 14–18, 2016. Google Scholar
31. Moro, R., S. Agneessens, H. Rogier, A. Dierck, and M. Bozzi, "Textile microwave components in substrate integrated waveguide technology," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 2, 422-432, Feb. 2015.
doi:10.1109/TMTT.2014.2387272 Google Scholar
32. Liu, F. X., Z. Xu, D. C. Ranasinghe, and C. Fumeaux, "Textile folded half-mode substrateintegrated cavity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1693-1697, Feb. 2016.
doi:10.1109/LAWP.2016.2524458 Google Scholar
33. Tahseen, M. M. and A. A. Kishk, "Flexible and portable textile-reflectarray backed by frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 1, 46-49, Jan. 2018.
doi:10.1109/LAWP.2017.2772919 Google Scholar
34. Whittow, W. G., et al. "Printed frequency selective surfaces on textiles," Electr. Lett., Vol. 50, No. 13, 916-917, Jun. 19, 2014.
doi:10.1049/el.2014.0955 Google Scholar
35. Ghebrebrhan, M., et al. "Textile frequency selective surface," IEEE Microw. Wireless Components Lett., Vol. 27, No. 11, 989-991, Nov. 2017.
doi:10.1109/LMWC.2017.2750031 Google Scholar
36. Alonso-Gonzalez, L., et al. "Novel parametric electromagnetic modelling to simulate textile integrated circuits," Int. Conf. Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (N, Seville, Spain, May 17–19, 2017. Google Scholar
37. Alonso-Gonzalez, L., et al. "On the techniques to develop millimeter-wave textile integrated waveguides using rigid warp threads," IEEE Trans. Microw. Theory and Techn., Vol. 66, No. 2, 751-761, 2018.
doi:10.1109/TMTT.2017.2777983 Google Scholar
38. Alonso-Gonzalez, L., et al. "Fully textile-integrated microstrip-fed slot antenna for dedicated shortrange communications," IEEE Trans. Antennas Propag., 2018. Google Scholar
39. Shieldex Trading "Shieldex R Conductive Twisted Yarn Silver Plated Nylon 66 Yarn 117/17 dtex 2-ply,", PN# 260121011717, 2010 [Revised Jan. 2012], [Online], Available: www.shopvtechtextiles.com/assets/images/260121011717.pdf, [Accessed Jan. 21, 2018]. Google Scholar
40. Yu, B., et al. "2D and 3D imaging of fatigue failure mechanisms of 3D woven composites," Composites Part A: Applied Science and Manufacturing, Vol. 77, 37-49, Oct. 2015. Google Scholar
41. Jin, L., et al. "Tension-tension fatigue behavior of layer-to-layer 3-D angle-interlock woven composites," Materials Chemistry and Physics, Vol. 140, 183-190, Jun. 2013.
doi:10.1016/j.matchemphys.2013.03.020 Google Scholar
42. Long, A. C. and L. P. Brown, Composite Reinforcements for Optimum Performance: Modelling the Geometry of Textile Reinforcements for Composites: Tex- Gen, Woodhead Publishing Ltd, 2011, ISBN: 978-1-84569-965-9, [Online], Available: www.woodheadpublishing.com/en/book.aspx?bookID=2233.
43. Lin, H., L. P. Brown, and A. C. Long, "Modelling and simulating textile structures using TexGen," Advanced Materials Research, Vol. 331, 44-47, 2011.
doi:10.4028/www.scientific.net/AMR.331.44 Google Scholar