1. Tai, C. T., Dyadic Green’s Function in Electromagnetic Theory, International Textbook, Scranton, PA, 1975.
2. Felsen, L. P. and N.Marcuvitz, Radiation and Scattering of Waves, Prentice Hall, Englewood Cliffs, NJ, 1973.
3. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., John Wiley & Sons, New York, 1990.
4. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985.
5. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.
6. Tsang, L. and S. Huang, "Broadband Green’s function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress In Electromagnetics Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605 Google Scholar
7. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901 Google Scholar
8. Huang, S. and L. Tsang, "Fast electromagnetic analysis of emissions from printed circuit board using broadband Green’s function method," IEEE Trans. Electromagn. Compat., Vol. 58, 1642-1652, 2016.
doi:10.1109/TEMC.2016.2565584 Google Scholar
9. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBGFL)," Opt. Express, Vol. 24, 945-965, 2016.
doi:10.1364/OE.24.000945 Google Scholar
10. Liao, T.-H., K.-H. Ding, and L. Tsang, "High order extractions of broadband Green’s function with low wavenumber extractions for arbitrary shaped waveguide," Progress In Electromagnetics Research, Vol. 158, 7-20, 2017.
doi:10.2528/PIER16101003 Google Scholar
11. Tan, S. and L. Tsang, "Green’s functions, including scatterers, for photonic crystals and metamaterials," J. Opt. Soc. Am. B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450 Google Scholar
12. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green’s function," Opt. Lett., Vol. 42, 4667-4670, 2017.
doi:10.1364/OL.42.004667 Google Scholar
13. Tsang, L. W. and S. Huang, "Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique,", Patent 9,946,825, issued April 17, 2018. Google Scholar
14. Tsang, L., K.-H. Ding, T.-H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green’s function with higher order low wavenumber extractions," IEEE Trans. Electromagn. Compat., Vol. 60, 16-25, 2018.
doi:10.1109/TEMC.2017.2727958 Google Scholar
15. Kwek, W., L. Tsang, K.-H. Ding, and T.-H. Liao, "Broadband Green’s function with higher order extractions for arbitrary shaped waveguide obeying Neumann boundary conditions," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compa, 72-75, IEEE, 2018.
doi:10.1109/ISEMC.2018.8393741 Google Scholar
16. Tan, S. and L. Tsang, "Effects of localized defects/sources in a periodic lattice using Green’s function of periodic scatterers ," 2108 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Boston, MA, USA. Google Scholar
17. Tsang, L. W. and S. Tan, "Full wave simulations of photonic crystals and metamaterials using the broadband Ggreen’s functions,", U.S. Patent Application 15/798,148, filed May 3, 2018. Google Scholar
18. Zhang, W., C. T. Chan, and P. Sheng, "Multiple scattering theory and its application to photonic band gap systems consisting of coated spherers," Opt. Express, Vol. 8, 203-208, 2001.
doi:10.1364/OE.8.000203 Google Scholar
19. Ergul, E., T. Malas, and L. Gurel, "Analysis of dielectric photonic-crystal problems with MLFMA and Schur-complement preconditioners," J. Lightw. Technol., Vol. 29, 888-897, 2011.
doi:10.1109/JLT.2011.2106196 Google Scholar
20. Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals, CRC Press, 2006.
21. Yariv, A. and P. Yeh, Optical Waves in Crystals, John Wiley, New Jersey, 2003.
22. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light, Princeton University, 2011.
23. Luo, M. and Q. H. Liu, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Phys. Rev. E, Vol. 80, 056702, 2009.
doi:10.1103/PhysRevE.80.056702 Google Scholar
24. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173 Google Scholar
25. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, 1976.
26. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, 2001.
doi:10.1007/978-3-662-14324-7