1. Hamidian, A. and V. Subramanian, "Right and left handed transmission lines for millimeter wave applications," German Microwave Conference Digest of Papers, 227-230, Berlin, 2010. Google Scholar
2. Horii, Y., T. Hayashi, and Y. Iida, "A novel composite right/left-handed transmission line composed of cylindrical left-handed unit cells," IEEE MTT-S International Microwave Symposium Digest, 1013-1016, San Francisco, CA, 2006. Google Scholar
3. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
4. Ziolkowski, R. W., "Double negative metamaterial design, experiments, and applications," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 396-399, 2002.
doi:10.1109/APS.2002.1016107 Google Scholar
5. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604 Google Scholar
6. Smith, D. R., W. J. Padilla, D. C. Vier, et al. "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
7. Decoopman, T., O. Vanbesien, and D. Lippens, "Demonstration of backward wave in a single split ring resonator and wire loaded finline," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 11, 507-509, Nov. 2004.
doi:10.1109/LMWC.2004.837075 Google Scholar
8. Decoopman, T., A. Marteau, E. Lheurette, et al. "Left-handed electromagnetic properties of split- ring resonator and wire lzoaded transmission line in a fin-line technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1451-1457, Apr. 2006.
doi:10.1109/TMTT.2006.871356 Google Scholar
9. Salehi, H. and R. R. Mansour, "A new realization of left-handed transmission lines employing a coaxial waveguide structure," IEEE MTT-S Int. Dig., 1941-1944, Long Beach, CA, Jun. 2005. Google Scholar
10. Saleh, H. and R. R. Mansour, "Analysis, modeling, and applications of coaxial waveguide-based left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3489-3497, Nov. 2005.
doi:10.1109/TMTT.2005.857335 Google Scholar
11. Caloz, C., H. Okabe, T. Iwai, et al. "Transmission line approach of left-handed (LH) material," Proc. USNC/URSI Nat. Rad. Sci. Meeting, 39, San Antonio, TX, Jun. 2002. Google Scholar
12. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2701-2712, Dec. 2002.
doi:10.1109/TMTT.2002.805197 Google Scholar
13. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, et al. "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069 Google Scholar
14. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna designusing metamaterial transmission lines," Radio Science, Vol. 52, 1510-1521, 2017.
doi:10.1002/2017RS006313 Google Scholar
15. Sabah, C., "Composition of non-concentric triangular split ring resonators and wire strip for dual-band negative index metamaterials," IEEE Microwave Symposium, 303-306, 2010. Google Scholar
16. Xu, H. X., G. M. Wang, C. X. Zhang, et al. "Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry," Photonics & Nanostructures Fundamentals & Applications, Vol. 11, No. 1, 15-28, 2013.
doi:10.1016/j.photonics.2012.06.011 Google Scholar
17. Fiori, M., P. Muse, and G. Sapiro, "Topology constraints in graphical models," Advances in Neural Information Processing Systems, 791-799, 2012. Google Scholar
18. Songsiri, J. and L. Vandenberghe, "Topology selection in graphical models of autoregressive processes," Journal of Machine Learning Research, Vol. 11, No. 2, 2671-2705, 2014. Google Scholar
19. Sajith, K., J. Gandhimohan, and T. Shanmuganantham, "Design of SRR loaded octagonal slot CPW fed wearable antenna for EEG monitoring applications," Proceedings of IEEE International Conference on Circuits and Systems (ICCS), 49-53, Thiruvananthapuram, 2017.
doi:10.1109/ICCS1.2017.8325961 Google Scholar
20. Haghighi, S. S., A. Heidari, and M. Movahhedi, "A three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4578-4582, Oct. 2015.
doi:10.1109/TAP.2015.2456951 Google Scholar
21. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, et al. "Hexa-band planar antenna with asymmetric fork-shaped radiators for multiband and broadband communication applications," IET Microwaves, Antennas & Propagation, Vol. 10, No. 5, 471-478, 2016.
doi:10.1049/iet-map.2015.0608 Google Scholar
22. Alhawari, A. R. H., A. Ismail, and M. A. Mahdi, "Compact ultra-wideband metamaterial antenna," Proceedings of 16th Asia-Pacific Conference on Communications (APCC), 64-68, Auckland, New Zealand, Oct. 31--Nov. 3, 2010. Google Scholar
23. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Interaction between closely packed array antenna elements using metasurface for applications such as MIMO systems and synthetic aperture radars," Radio Science, Vol. 53, No. 11, 1368-1381, 2018.
doi:10.1029/2018RS006533 Google Scholar
24. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 198, 2018.
doi:10.3390/electronics7090198 Google Scholar
25. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, et al. "Study on isolation improvement between closely packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microwaves, Antennas & Propagation, Vol. 12, No. 14, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103 Google Scholar