Vol. 165
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-06-10
Performance Improvement and Antenna Design of Left-Handed Material Units Based on Topological Deformations
By
Progress In Electromagnetics Research, Vol. 165, 13-33, 2019
Abstract
In this paper, by applying topological theory, we evaluate some left-handed unit structures. Based on the classification of topological deformation, the laws and characteristics of potential electromagnetic parameters are captured. The original left-handed material unit is realized by using a circular C-shaped coupling ring, the whose whole size is 10 × 10 × 0.5 mm3. Through three kinds of topological deformations, to explore the influence of topology on antenna performance, the electromagnetic parameters and left-handed characteristics of the original and modified units are compared and analyzed. For the designed handshake-shaped unit structure, simulation analysis predicts that dual-frequency, or even multi-band left-handed characteristics, can be achieved. To expand the structural performance of the handshake-shaped unit, an annular line for coupling enhancement is added inside the U-shaped structure to form an integrally coupled annular unit structure. Simulation results show that, with amplitudes of reflection coefficients of -27.1 dB and -14.5 dB, the resonance points of the improved unit structure are 3.57 GHz and 5.64 GHz, respectively. Loading the unit structure with a dual-band left-handed characteristic, a UWB antenna is designed and analyzed in detail. Through simulation, antenna performance is most affected by interference within the range of 2.5 ~ 5.0 GHz, which coincides with the double negative frequency band of the loaded left-handed structural unit. The notch frequency band of the designed UWB antenna, which is much wider than traditional notch antennas, is 3.62 ~ 4.54 GHz, with a notch bandwidth of 920 MHz.
Citation
Baiqiang You, Mengyin Dong, Jianhua Zhou, and Haike Xu, "Performance Improvement and Antenna Design of Left-Handed Material Units Based on Topological Deformations," Progress In Electromagnetics Research, Vol. 165, 13-33, 2019.
doi:10.2528/PIER19011603
References

1. Hamidian, A. and V. Subramanian, "Right and left handed transmission lines for millimeter wave applications," German Microwave Conference Digest of Papers, 227-230, Berlin, 2010.        Google Scholar

2. Horii, Y., T. Hayashi, and Y. Iida, "A novel composite right/left-handed transmission line composed of cylindrical left-handed unit cells," IEEE MTT-S International Microwave Symposium Digest, 1013-1016, San Francisco, CA, 2006.        Google Scholar

3. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188        Google Scholar

4. Ziolkowski, R. W., "Double negative metamaterial design, experiments, and applications," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 396-399, 2002.
doi:10.1109/APS.2002.1016107        Google Scholar

5. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604        Google Scholar

6. Smith, D. R., W. J. Padilla, D. C. Vier, et al. "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

7. Decoopman, T., O. Vanbesien, and D. Lippens, "Demonstration of backward wave in a single split ring resonator and wire loaded finline," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 11, 507-509, Nov. 2004.
doi:10.1109/LMWC.2004.837075        Google Scholar

8. Decoopman, T., A. Marteau, E. Lheurette, et al. "Left-handed electromagnetic properties of split- ring resonator and wire lzoaded transmission line in a fin-line technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1451-1457, Apr. 2006.
doi:10.1109/TMTT.2006.871356        Google Scholar

9. Salehi, H. and R. R. Mansour, "A new realization of left-handed transmission lines employing a coaxial waveguide structure," IEEE MTT-S Int. Dig., 1941-1944, Long Beach, CA, Jun. 2005.        Google Scholar

10. Saleh, H. and R. R. Mansour, "Analysis, modeling, and applications of coaxial waveguide-based left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3489-3497, Nov. 2005.
doi:10.1109/TMTT.2005.857335        Google Scholar

11. Caloz, C., H. Okabe, T. Iwai, et al. "Transmission line approach of left-handed (LH) material," Proc. USNC/URSI Nat. Rad. Sci. Meeting, 39, San Antonio, TX, Jun. 2002.        Google Scholar

12. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2701-2712, Dec. 2002.
doi:10.1109/TMTT.2002.805197        Google Scholar

13. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, et al. "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069        Google Scholar

14. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna designusing metamaterial transmission lines," Radio Science, Vol. 52, 1510-1521, 2017.
doi:10.1002/2017RS006313        Google Scholar

15. Sabah, C., "Composition of non-concentric triangular split ring resonators and wire strip for dual-band negative index metamaterials," IEEE Microwave Symposium, 303-306, 2010.        Google Scholar

16. Xu, H. X., G. M. Wang, C. X. Zhang, et al. "Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry," Photonics & Nanostructures Fundamentals & Applications, Vol. 11, No. 1, 15-28, 2013.
doi:10.1016/j.photonics.2012.06.011        Google Scholar

17. Fiori, M., P. Muse, and G. Sapiro, "Topology constraints in graphical models," Advances in Neural Information Processing Systems, 791-799, 2012.        Google Scholar

18. Songsiri, J. and L. Vandenberghe, "Topology selection in graphical models of autoregressive processes," Journal of Machine Learning Research, Vol. 11, No. 2, 2671-2705, 2014.        Google Scholar

19. Sajith, K., J. Gandhimohan, and T. Shanmuganantham, "Design of SRR loaded octagonal slot CPW fed wearable antenna for EEG monitoring applications," Proceedings of IEEE International Conference on Circuits and Systems (ICCS), 49-53, Thiruvananthapuram, 2017.
doi:10.1109/ICCS1.2017.8325961        Google Scholar

20. Haghighi, S. S., A. Heidari, and M. Movahhedi, "A three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4578-4582, Oct. 2015.
doi:10.1109/TAP.2015.2456951        Google Scholar

21. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, et al. "Hexa-band planar antenna with asymmetric fork-shaped radiators for multiband and broadband communication applications," IET Microwaves, Antennas & Propagation, Vol. 10, No. 5, 471-478, 2016.
doi:10.1049/iet-map.2015.0608        Google Scholar

22. Alhawari, A. R. H., A. Ismail, and M. A. Mahdi, "Compact ultra-wideband metamaterial antenna," Proceedings of 16th Asia-Pacific Conference on Communications (APCC), 64-68, Auckland, New Zealand, Oct. 31--Nov. 3, 2010.        Google Scholar

23. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Interaction between closely packed array antenna elements using metasurface for applications such as MIMO systems and synthetic aperture radars," Radio Science, Vol. 53, No. 11, 1368-1381, 2018.
doi:10.1029/2018RS006533        Google Scholar

24. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 198, 2018.
doi:10.3390/electronics7090198        Google Scholar

25. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, et al. "Study on isolation improvement between closely packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microwaves, Antennas & Propagation, Vol. 12, No. 14, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103        Google Scholar