Vol. 169
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-12-31
A Parameter-Free Calibration Process for a Scheimpflug LIDAR for Volumetric Profiling
By
Progress In Electromagnetics Research, Vol. 169, 117-127, 2020
Abstract
Scheimpflug LIDAR has attracted considerable attention in the recent years, and has been widely applied in many fields due to its infinite depth of field. In this study, we reconstruct a series of formulas to demonstrate the Scheimpflug principles, with reference at the hinge point. These formulas based on directly measurable parameters are simple in form. Base on this, we report a new calibration for the Scheimpflug system, without measuring the instrument parameters. We also confirm that the result of calibration is accordance with the actual setting of the system. To take full advantage of the infinite depth of field of the Scheimpflug system, we have designed and carried out the system, combining with a rotary stage, to obtain the entire volumetric profile for a target of interest in a cycle rotation. To the best of our knowledge, this is the first time Scheimpflug system is utilized to perform a three-dimensional volumetric profile measurement.
Citation
Longqiang Luo, Xiang Chen, Zhanpeng Xu, Shuo Li, Yaoran Sun, and Sailing He, "A Parameter-Free Calibration Process for a Scheimpflug LIDAR for Volumetric Profiling," Progress In Electromagnetics Research, Vol. 169, 117-127, 2020.
doi:10.2528/PIER20120701
References

1. Fu, G., A. Menciassi, and P. Dario, "Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots," Robotics and Autonomous Systems, Vol. 60, 1317-1326, 2012.
doi:10.1016/j.robot.2012.06.002

2. Schwenke, H., et al., "Optical methods for dimensional metrology in production engineering," CIRP Anmanuf. Technol., Vol. 51, 685-699, 2002.
doi:10.1016/S0007-8506(07)61707-7

3. Lu, Y. and R. Lu, "Structured-illumination reflectance imaging coupled with phase analysis techniques for surface profiling of apples," Journal of Food Engineering, Vol. 232, 11-20, 2018.
doi:10.1016/j.jfoodeng.2018.03.016

4. Sansoni, G., M. Trebeschi, and F. Docchio, "State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation," Sensors, Vol. 9, 568-601, 2009.
doi:10.3390/s90100568

5. Nadolny, K. and W. Kaplonek, "Analysis of flatness deviations for austenitic stainless steel workpieces after efficient surface machining," Measurement Science Review, Vol. 1, 204-212, 2014.
doi:10.2478/msr-2014-0028

6. Ye, J., et al., "3D reconstruction of line-structured light based on binocular vision calibration rotary axis," Applied Optics, Vol. 5, 8272-8278, 2020.
doi:10.1364/AO.403356

7. Wang, J. and Y. Yang, "High-speed three-dimensional measurement technique for object surface with a large range of reflectivity variations," Applied Optics, Vol. 57, 9172-9182, 2018.
doi:10.1364/AO.57.009172

8. Schlarp, J., E. Csencsics, and G. Schitter, "Optical scanning of laser line sensors for 3D imaging," Applied Optics, Vol. 57, 5242-5248, 2018.
doi:10.1364/AO.57.005242

9. Lilienblum, E. and A. Al-Hamadi, "A structured light approach for 3-D surface reconstruction with a stereo line-scan system," IEEE Trans. Instrum. Meas., Vol. 64, 1266-1274, 2015.
doi:10.1109/TIM.2014.2364105

10. Yang, Y., et al., "3D color reconstruction based on underwater RGB laser line scanning system," Optik, Vol. 125, 6074-6077, 2014.
doi:10.1016/j.ijleo.2014.07.072

11. Cai, F., et al., "High-resolution mobile bio-microscope with smartphone telephoto camera lens," Optik, Vol. 20, 164449, 2020.
doi:10.1016/j.ijleo.2020.164449

12. Cai, F., et al., "Handheld four-dimensional optical sensor," Optik, Vol. 20, 164001, 2020.
doi:10.1016/j.ijleo.2019.164001

13. Xu, Z., et al., "Light-sheet microscopy for surface topography measurements and quantitative analysis," Sensors, Vol. 20, 284210, 2020.

14. Blais, F., "Review of 20 years of range sensor development," Journal of Electronic Imaging, Vol. 13, 231-243, 2004.
doi:10.1117/1.1631921

15. Lin, H., et al., "Review and comparison of high-dynamic range three-dimensional shape measurement techniques," Journal of Sensors, Vol. 2017, 957685, 2017.
doi:10.1155/2017/9576850

16. Brydegaard, M., et al., "The Scheimpflug lidar method," SPIE Lidar Remote Sensing for Environmental Monitoring, Vol. 10406, 104060I, 2017.

17. Prasad, A. K., "Stereoscopic particle image velocimetry," Experimentsin Fluids, Vol. 29, 103-116, 2000.
doi:10.1007/s003480000143

18. Zang, W. J. and A. K. Prasad, "Performance evaluation of a Scheimpflug stereocamera for particle image velocimetry," Applied Optics, Vol. 36, 8738-8744, 1997.
doi:10.1364/AO.36.008738

19. Prasad, A. K. and K. Jensen, "Scheimpflug stereocamera for particle image velocimetry in liquid flows," Applied Optics, Vol. 34, 7092-7099, 1995.
doi:10.1364/AO.34.007092

20. Kong, Z., et al., "Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols," Applied Optics, Vol. 5, 8612-8621, 2019.
doi:10.1364/AO.58.008612

21. Larsson, J., et al., "Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-μm fiber source," Optics Express, Vol. 27, 17348-17358, 2019.
doi:10.1364/OE.27.017348

22. Sun, G., et al., "Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection," Optics Express, Vol. 26, 7423-7436, 2018.
doi:10.1364/OE.26.007423

23. Mei, L., P. Guan, and Z. Kong, "Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique," Optics Express, Vol. 25, A953-A962, 2017.
doi:10.1364/OE.25.00A953

24. Mei, L., "Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme," Optics Letters, Vol. 42, 3562-3565, 2017.
doi:10.1364/OL.42.003562

25. Mei, L., et al., "Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique," Optics Express, Vol. 25, A628-A638, 2017.
doi:10.1364/OE.25.00A628

26. Mei, L. and M. Brydegaard, "Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system," Optics Express, Vol. 23, 1613-1628, 2015.
doi:10.1364/OE.23.0A1613

27. Lin, H., Y. Zhang, and L. Mei, "Fluorescence Scheimpflug LiDAR developed for the three-dimension profiling of plants," Optics Express, Vol. 28, 9269-9279, 2020.
doi:10.1364/OE.389043

28. Wang, X., et al., "Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system," Applied Physics B — Lasers and Optics, Vol. 12, 20711, 2018.

29. Zhao, G., et al., "Inelastic hyperspectral lidar for profiling aquatic ecosystems," Laser & Photonics Reviews, Vol. 10, 807-813, 2016.
doi:10.1002/lpor.201600093

30. Gao, F., et al., "Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system," Optics Express, Vol. 25, 25515-25522, 2017.
doi:10.1364/OE.25.025515

31. Chen, K., et al., "Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry," Applied Optics, Vol. 58, 7643-7648, 2019.
doi:10.1364/AO.58.007643

32. Gao, F., et al., "Light-sheet based two-dimensional Scheimpflug lidar system for profile measurements," Optics Express, Vol. 26, 27179-27188, 2018.
doi:10.1364/OE.26.027179

33. Peng, J., et al., "Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens," Applied Optics, Vol. 54, 10055-10062, 2015.
doi:10.1364/AO.54.010055

34. Yin, X., et al., "Analysis and simplification of lens distortion model for the Scheimpflug imaging system calibration," Optics Communications, Vol. 43, 380-384, 2019.
doi:10.1016/j.optcom.2018.05.086

35. Sun, C., et al., "Review of calibration methods for Scheimpflug camera," Journalof Sensors, Vol. 2018, 3901431, 2018.

36. Miks, A., J. Novak, and P. Novak, "Analysis of imaging for laser triangulation sensors under Scheimpflug rule," Optics Express, Vol. 21, 18225-18235, 2013.
doi:10.1364/OE.21.018225

37. Li, J., et al., "Calibration of a multiple axes 3-D laser scanning system consisting of robot, portable laser scanner and turntable," Optik, Vol. 122, 324-329, 2011.
doi:10.1016/j.ijleo.2010.02.014