Vol. 171
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-13
Mechanisms and Modeling of 2D-Materials-Based Resistive Random Access Memory Devices (Invited Review)
By
Progress In Electromagnetics Research, Vol. 171, 171-184, 2021
Abstract
Resistive random access memory (RRAM) devices are promising candidates for next generation high capacity data storagedue to their superior properties such ascost-effective fabrication, high operating speed, low power consumption, and long data retention. Particularly, the two dimensional (2D)-materials-based RRAM has attracted researchers' attention because of its unique physical and chemical properties without the constraint of lattice matching. In this review, the switching mechanisms and modeling of RRAM devices based on the 2D materials such as hexagonal-boron nitride (h-BN) and graphene are discussed. Firstly, the monolayer and multilayer h-BNRRAMs are introduced, and their mechanisms and compact model are further described. Then, the mechanisms of graphene electrode-based RRAM (GE-RRAM) for different applications are also introduced and compared. Furthermore, the electrical conductivity, multi-physic and compact models of GE-RRAM are introduced. This review paper provides the guidance for the design and optimization of the 2D-materials-based RRAM in the next generation memories.
Citation
Hao Xie, Zhili Wang, Yanbin Yang, Xiaohui Hu, Hong Liu, and Wei Qi, "Mechanisms and Modeling of 2D-Materials-Based Resistive Random Access Memory Devices (Invited Review)," Progress In Electromagnetics Research, Vol. 171, 171-184, 2021.
doi:10.2528/PIER21100802
References

1. Yang, J. J., D. B. Strukov, and D. R. Stewart, "Memristive devices for computing," Nature Nanotech., Vol. 8, No. 1, 13-24, 2013.
doi:10.1038/nnano.2012.240        Google Scholar

2. Wong, H.-S. P. and S. Salahuddin, "Memory leads the way to better computing," Nature Nanotech., Vol. 10, No. 3, 191-195, 2015.
doi:10.1038/nnano.2015.29        Google Scholar

3. Fong, S. W., C. M. Neumann, and H.-S. P. Wong, "Phase-change memory towards a storage-class memory," IEEE Trans. Electron Devices, Vol. 64, No. 11, 4374-4385, 2017.
doi:10.1109/TED.2017.2746342        Google Scholar

4. Yu, S. M., X. M. Guan, and H. S. P. Wong, "On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization," 2011 IEEE International Electron Devices Meeting (IEDM), 2011.        Google Scholar

5. Wang, X. F., H. M. Zhao, Y. Yang, and T. L. Ren, "Graphene resistive random memory - The promising memory device in next generation," Chinese Physics B, Vol. 26, No. 3, 038501, 2017.
doi:10.1088/1674-1056/26/3/038501        Google Scholar

6. Paolo, L., R. Rosario, and I. Fernanda, "Forming kinetics in HfO2-based RRAM cells," IEEE Trans. Electron Devices, Vol. 60, No. 1, 438-443, 2013.
doi:10.1109/TED.2012.2227324        Google Scholar

7. Kim, S. and Y. K. Choi, "A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM," IEEE Trans. Electron Devices, Vol. 56, No. 12, 3049-3054, 2009.
doi:10.1109/TED.2009.2032597        Google Scholar

8. Kumar, D., U. Chand, L. W. Siang, and T. Y. Tseng, "High-performance TiN/Al2O3/ZnO/Al2O3/TiN flexible RRAM device with high bending condition," IEEE Trans. Electron Devices, Vol. 67, No. 2, 493-498, 2020.
doi:10.1109/TED.2019.2959883        Google Scholar

9. Chien, W. C., Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, and C.-Y. Lu, "Unipolar switching behaviors of RTO WOX RRAM," IEEE Electron Devices Letters, Vol. 31, No. 2, 126-128, 2010.
doi:10.1109/LED.2009.2037593        Google Scholar

10. Sung, C., et al. "Investigation of I-V linearity in TaOx-based RRAM devices for neuromorphic applications," IEEE Journal of The Electron Devices Society, Vol. 7, No. 1, 404-408, 2019.
doi:10.1109/JEDS.2019.2902653        Google Scholar

11. Xie, H. W., Y. T. Liu, and Z. X. Huang, "A NiOx, based threshold switching selector for RRAM crossbar array application," 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019.        Google Scholar

12. Woo, J., et al. "Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems," IEEE Electron Devices Letters, Vol. 37, No. 8, 994-997, 2016.
doi:10.1109/LED.2016.2582859        Google Scholar

13. Wedig, A., M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, "Nanoscale cation motion in TaOx, HfOx and TiOx," Nature Nanotech., Vol. 11, No. 1, 67-75, 2016.
doi:10.1038/nnano.2015.221        Google Scholar

14. Lu, N. D., P. X. Sun, L. Li, Q. Liu, S. B. Long, H. B. Lv, and M. Liu, "Thermal effect on endurance performance of 3-dimensional RRAM crossbar array," Chinese Physics B, Vol. 25, No. 5, 1-5, 2016.        Google Scholar

15. Sohn, J., S. Lee, Z. Jiang, H. Y. Chen, and H. S. P. Wong, "Atomically thin graphene plane electrode for 3D RRAM," 2014 IEEE International Electron Devices Meeting (IEDM), 2014.        Google Scholar

16. Yu, S., H. Y. Chen, B. Gao, J. Kang, and H. S. P. Wong, "HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture," ACS Nano, Vol. 7, No. 3, 2320-2325, 2013.
doi:10.1021/nn305510u        Google Scholar

17. Ji, Y., S. Lee, B. Cho, S. Song, and T. Lee, "Flexible organic memory devices with multilayer graphene electrodes," ACS Nano, Vol. 5, No. 7, 5995-6000, 2011.
doi:10.1021/nn201770s        Google Scholar

18. Wang, C. H., et al. "3D monolithic stacked 1T1R cells using monolayer MoS2 FET and hBN RRAM fabricated at low (150 degrees C) temperature," 2018 IEEE International Electron Devices Meeting (IEDM), 2018.        Google Scholar

19. Pan, C. B., et al. "Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride," Adv. Funct. Mater., Vol. 27, No. 10, 1604811, 2017.
doi:10.1002/adfm.201604811        Google Scholar

20. Zhuang, P. P., et al. "Nonpolar resistive switching of multilayer-hBN-based memories," Adv. Electron. Mater., Vol. 6, No. 1, 1900979, 2020.
doi:10.1002/aelm.201900979        Google Scholar

21. Ranjan, A., N. Raghavan, S. J. O'Shea, S. Mei, M. Bosman, K. Shubhakar, and K. L. Pey, "Conductive atomic force microscope study of bipolar and threshold resistive switching in 2D hexagonal boron nitride films," Scientific Reports, Vol. 8, 2854, 2018.
doi:10.1038/s41598-018-21138-x        Google Scholar

22. Wu, X. H., et al. "Thinnest nonvolatile memory based on monolayer h-BN," Adv. Mater., Vol. 31, No. 15, 1806790, 2019.
doi:10.1002/adma.201806790        Google Scholar

23. Zhu, K. C., et al. "Graphene-boron nitride-graphene cross-point memristors with three stable resistive states," ACS Applied Materials & Interfaces, Vol. 11, No. 41, 37999-38005, 2019.
doi:10.1021/acsami.9b04412        Google Scholar

24. Zhuang, P. P., W. Z. Ma, J. Liu, W. W. Cai, and W. Y. Lin, "Progressive RESET induced by Joule heating in hBN RRAMs," Appl. Phys. Lett., Vol. 118, No. 14, 143101, 2021.
doi:10.1063/5.0040902        Google Scholar

25. Lin, W. Y., P. P. Zhuang, D. Akinwande, X. A. Zhang, and W. W. Cai, "Oxygen-assisted synthesis of hBN films for resistive random access memories," Applied Phys. Letters, Vol. 115, No. 7, 073101, 2019.
doi:10.1063/1.5100495        Google Scholar

26. Palumbo, F., et al. "Bimodal dielectric breakdown in electronic devices using chemical vapor deposited hexagonal boron nitride as dielectric," Advanced Electronic Materials, Vol. 4, No. 3, 1700506, 2018.
doi:10.1002/aelm.201700506        Google Scholar

27. Jiang, J. K., K. Parto, W. Cao, and K. Banerjee, "Ultimate monolithic-3D integration with 2D materials: Rationale, prospects, and challenges," IEEE Journal of The Electron Devices Society, Vol. 7, No. 1, 878-887, 2019.
doi:10.1109/JEDS.2019.2925150        Google Scholar

28. Tian, H., H. Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T. L. Ren, Y. Zhang, and W. H. S. Philip, "Monitoring oxygen movement by raman spectroscopy of resistive random access memory with a graphene-inserted electrode," NANO Letters, Vol. 13, 651-657, 2013.
doi:10.1021/nl304246d        Google Scholar

29. Lee, K., et al. "Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene," Sci. Rep., Vol. 5, 11279, 2015.
doi:10.1038/srep11279        Google Scholar

30. Lee, S., J. Sohn, Z. Z. Jiang, H. Y. Chen, and H.-S. P. Wong, "Metal oxide-resistive memory using graphene-edge electrodes," Nature Commu., Vol. 6, 8407, 2015.
doi:10.1038/ncomms9407        Google Scholar

31. Lee, J., C. Du, K. Sun, E. Kioupakis, and W. D. Lu, "Tuning ionic transport in memristive devices by graphene with engineered nanopores," ACS Nano, Vol. 10, No. 3, 3571-3579, 2016.
doi:10.1021/acsnano.5b07943        Google Scholar

32. Xie, H., W. C. Chen, S. Zhang, G. D. Zhu, A. Khaliq, J. Hu, and W. Y. Yin, "Modeling and simulation of resistive random access memory with graphene electrode," IEEE Trans. Electron Devices, Vol. 67, No. 3, 915-921, 2020.
doi:10.1109/TED.2020.2965182        Google Scholar

33. Alimkhanuly, B., S. Kim, L. W. Kin, and S. Lee, "Electromagnetic analysis of vertical resistive memory with a sub-nm thick electrode," Nanomaterials, Vol. 10, No. 9, 1634, 2020.
doi:10.3390/nano10091634        Google Scholar

34. Dean, C. R., A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, "Boron nitride substrates for high-quality graphene electronics," Nat. Nanotechnol., Vol. 5, No. 10, 722-726, 2010.
doi:10.1038/nnano.2010.172        Google Scholar

35. Giovannetti, G., P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, "Substrate-induced band gap in graphene on hexagonal boron nitride:Ab initio density functional calculations," Phys. Rev. B, Vol. 76, No. 7, 073103, 2007.
doi:10.1103/PhysRevB.76.073103        Google Scholar

36. Weng, Q. H., X. B. Wang, X. Wang, Y. Bando, and D. Golberg, "Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications," Chem. Soc. Rev., Vol. 45, No. 12, 3989-4012, 2016.
doi:10.1039/C5CS00869G        Google Scholar

37. Lee, J., T. J. Ha, K. N. Parrish, S. F. Chowdhury, L. Tao, A. Dodabalapur, and D. Akinwande, "High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates," IEEE Electron Device Lett., Vol. 34, No. 2, 172-174, 2013.
doi:10.1109/LED.2012.2233707        Google Scholar

38. Jiang, Y., X. Lin, and H. Chen, "Directional polaritonic excitation of circular, huygens and Janus dipoles in graphene-hexagonal boron nitride heterostructures," Progress In Electromagnetics Research, Vol. 170, 169-176, 2021.
doi:10.2528/PIER21050101        Google Scholar

39. Shi, Y., C. Pan, V. Chen, N. Raghavan, K. L. Pey, F. M. Puglisi, E. Pop, H. S. P. Wong, and M. Lanza, "Coexistence of volatile and non-volatile resistive switching in 2D h-BN based electronic synapses," 2017 IEEE International Electron Devices Meeting (IEDM), 2017.        Google Scholar

40. Tsai, T. M., et al. "Controlling the degree of forming soft-breakdown and producing superior endurance performance by inserting BN-based layers in resistive random access memory," IEEE Electron Devices Letters, Vol. 38, No. 4, 445-448, 2017.
doi:10.1109/LED.2017.2664881        Google Scholar

41. Zhang, D. J., C. H. Yeh, W. Cao, and K. Banerjee, "0.5T0.5R - An ultracompact RRAM cell uniquely enabled by van derWaals heterostructures," IEEE Trans. Electron Devices, Vol. 68, No. 4, 2033-2040, 2021.
doi:10.1109/TED.2021.3057598        Google Scholar

42. Jeong, H., et al. "Resistive switching in few-layer hexagonal boron nitride mediated by defects and interfacial charge transfer," ACS Applied Materials & Interfaces, Vol. 12, No. 41, 46288-46295, 2020.
doi:10.1021/acsami.0c12012        Google Scholar

43. Tan, C. L. and H. Zhang, "Two-dimensional transition metal dichalcogenide nanosheet-based composites," Chem. Soc. Rev., Vol. 44, No. 9, 2713-2731, 2015.
doi:10.1039/C4CS00182F        Google Scholar

44. Rehman, M. M., H. M. N. U. Rehman, J. Z. Gul, W. Y. Kim, K. S. Karimov, and N. Ahmed, "Decade of 2D-materials-based RRAM devices: A review," Science and Technology of Advanced Materials, Vol. 21, No. 1, 147-186, 2020.
doi:10.1080/14686996.2020.1730236        Google Scholar

45. Chiang, C. C., V. Ostwal, P. Wu, C. S. Pang, F. Zhang, Z. H. Chen, and J. Appenzeller, "Memory applications from 2D materials," Applied Physics Reviews, Vol. 8, No. 2, 021306, 2021.
doi:10.1063/5.0038013        Google Scholar

46. Huang, Y. J. and S. C. Lee, "Graphene/h-BN heterostructures for vertical architecture of rram design," Scientific Reports, Vol. 7, 9679, 2017.
doi:10.1038/s41598-017-08939-2        Google Scholar

47. Pan, C. B., et al. "Model for multi-filamentary conduction in graphene/hexagonal-boron-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices," 2D Materials, Vol. 4, No. 2, 025099, 2017.
doi:10.1088/2053-1583/aa7129        Google Scholar

48. Zhang, H. H., P. P. Wang, S. Zhang, L. Li, P. Li, W. E. I. Sha, and L. J. Jiang, "Electromagnetic-circuital-thermal multiphysics simulation method: A review," Progress In Electromagnetics Research, Vol. 169, 87-101, 2020.
doi:10.2528/PIER20112801        Google Scholar

49. Duan, H., W. Fang, W.-Y. Yin, E. Li, and W. Chen, "Computational investigation of nanoscale semiconductor devices and optoelectronic devices from the electromagnetics and quantum perspectives by the finite difference time domain method," Progress In Electromagnetics Research, Vol. 170, 63-78, 2021.
doi:10.2528/PIER20122201        Google Scholar

50. Seo, S., J. Lim, S. Lee, B. Alimkhanuly, A. Kadyrov, D. Jeon, and S. Lee, "Graphene-edge electrode on a Cu-based chalcogenide selector for 3D vertical memristor cells," ACS Appl. Mater. Interfaces, Vol. 11, No. 46, 43466-43472, 2019.
doi:10.1021/acsami.9b11721        Google Scholar

51. Bai, Y., H. Wu, K. Wang, R. Wu, L. Song, T. Li, J. Wang, Z. Yu, and H. Qian, "Stacked 3D RRAM array with graphene/CNT as edge electrodes," Sci. Rep., Vol. 5, 13785, 2015.
doi:10.1038/srep13785        Google Scholar

52. Mannequi, C., A. Delamoreanu, L. Latu-Romain, V. Jousseaume, H. Grampeix, S. David, C. Rabot, A. Zenasni, C. Vallee, and P. Gonona, "Graphene-HfO2-based resistive RAM memories," Microelectronic Engineering, Vol. 161, 82-86, 2016.
doi:10.1016/j.mee.2016.04.009        Google Scholar

53. Zhao, H., H. Tu, F. Wei, and J. Du, "Highly transparent dysprosium oxide-based RRAM with multilayer graphene electrode for low-power nonvolatile memory application," IEEE Trans. Electron Dev., Vol. 61, No. 5, 1388-1393, 2014.
doi:10.1109/TED.2014.2312611        Google Scholar

54. Yao, J., J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, "Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene," Nature Commu., Vol. 3, 1101, 2012.
doi:10.1038/ncomms2110        Google Scholar

55. Yang, K., W. Y. Chang, P. Y. Teng, S. F. Jeng, S. J. Lin, P. W. Chiu, and J. H. He, "Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects," Proc. IEEE, Vol. 101, No. 7, 1732-1739, 2013.
doi:10.1109/JPROC.2013.2260112        Google Scholar

56. Hui, F., E. Grustan-Gutierrez, S. Long, Q. Liu, A. K. Ott, A. C. Ferrari, and M. Lanza, "Graphene and related materials for resistive random access memories," Adv. Electron. Mater., Vol. 3, No. 8, 600195, 2017.        Google Scholar

57. Liu, Y., S. B. Long, Q. Liu, H. B. Lv, and M. Liu, "Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials," Small, Vol. 13, No. 35, 1604306, 2017.
doi:10.1002/smll.201604306        Google Scholar

58. Kim, J., D. Kim, Y. Jo, J. Han, H. Woo, H. Kim, K. K. Kim, J. P. Hong, and H. Im, "Impact of graphene and single-layer BN insertion on bipolar resistive switching characteristics in tungsten oxide resistive memory," Thin Solid Films, Vol. 589, 188-193, 2015.
doi:10.1016/j.tsf.2015.05.002        Google Scholar

59. Qian, M., Y. Pan, F. Liu, M. Wang, H. Shen, D. He, B. Wang, Y. Shi, F. Miao, and X. Wang, "Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface," Adv. Mater, Vol. 26, No. 20, 3275-3281, 2014.
doi:10.1002/adma.201306028        Google Scholar

60. Jung, I., D. A. Dikin, R. D. Piner, and R. S. Rouff, "Tunable electrical conductivity of individual graphene oxide sheets reduced at ``low'' temperatures," Nano Letters, Vol. 8, No. 12, 4283-4287, 2008.
doi:10.1021/nl8019938        Google Scholar

61. Pan, F., S. Gao, C. Chen, C. Song, and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance," Materials Science & Engineering R-Reports, Vol. 83, 1-59, 2014.
doi:10.1016/j.mser.2014.06.002        Google Scholar

62. Chen, X., et al. "Controlled nonvolatile transition in polyoxometalates-graphene oxide hybrid memristive devices," Adv. Mater. Technol., Vol. 4, No. 3, 1800551, 2019.
doi:10.1002/admt.201800551        Google Scholar

63. Chen, C., C. Song, J. Yang, F. Zeng, and F. Pan, "Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure," Appl. Phys. Lett., Vol. 100, No. 25, 253509, 2012.
doi:10.1063/1.4730601        Google Scholar

64. Chen, H. Y., et al. "Experimental study of plane electrode thickness scaling for 3D vertical resistive random access memory," Nanotechnology, Vol. 24, No. 46, 465201, 2013.
doi:10.1088/0957-4484/24/46/465201        Google Scholar

65. Li, S., W. Chen, Y. Luo, J. Hu, P. Gao, J. Ye, K. Kang, H. Chen, E. Li, and W. Y. Yin, "Fully coupled multiphysics simulation of crosstalk effect in bipolar resistive random access memory," IEEE Trans. Electron Devices, Vol. 9, No. 64, 3647-3653, 2017.
doi:10.1109/TED.2017.2730857        Google Scholar

66. Wan, S. and Q. Cheng, "Role of interface interactions in the construction of GO-based artificial nacres," Adv. Materials Interfaces, Vol. 5, No. 12, 1800107, 2018.
doi:10.1002/admi.201800107        Google Scholar

67. Punckt, C., F. Muckel, S. Wolff, I. A. Aksay, C. A. Chavarin, G. Bacher, and W. Mertin, "The effect of degree of reduction on the electrical properties of functionalized graphene sheets," Appl. Phys. Lett., Vol. 102, No. 2, 023114, 2013.
doi:10.1063/1.4775582        Google Scholar