1. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics (Lancaster), Vol. 37, No. 8, 4210-4226, 2010. Google Scholar
2. Asefi, M., A. Baran, and J. LoVetri, "An experimental phantom study for air-based quasi-resonant microwave breast imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3946-3954, 2019.
doi:10.1109/TMTT.2019.2906619 Google Scholar
3. AlSawaftah, N., S. El-Abed, S. Dhou, and A. Zakaria, "Microwave imaging for early breast cancer detection: Current state, challenges, and future directions," Journal of Imaging, Vol. 8, No. 5, 2022, [Online], Available: https://www.mdpi.com/2313-433X/8/5/123.
doi:10.3390/jimaging8050123 Google Scholar
4. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine & Biology, Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
5. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013 Google Scholar
6. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, No. 11, 115010, 2010.
doi:10.1088/0266-5611/26/11/115010 Google Scholar
7. Rubaek, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993 Google Scholar
8. Abubakar, A., T. M. Habashy, G. Pan, M.-K. Li, and , "Application of the multiplicative regularized Gauss-Newton algorithm for three-dimensional microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2431-2441, 2012.
doi:10.1109/TAP.2012.2189712 Google Scholar
9. Meaney, P. M. and K. D. Paulsen, "Theoretical premises and contemporary optimizations of microwave tomography," Microwave Technologies, Ch. 14, D. A. Kishk and D. K. H. Yeap, Eds., IntechOpen, Rijeka, 2022, [Online], Available: https://doi.org/10.5772/intechopen.103011. Google Scholar
10. Abdollahi, N., D. Kurrant, P. Mojabi, M. Omer, E. Fear, and J. LoVetri, "Incorporation of ultrasonic prior information for improving quantitative microwave imaging of breast," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 98-110, 2019.
doi:10.1109/JMMCT.2019.2905344 Google Scholar
11. Kurrant, D., A. Baran, J. LoVetri, and E. Fear, "Integrating prior information into microwave tomography Part 1: Impact of detail on image quality," Medical Physics, Vol. 44, No. 12, 6461-6481, 2017, [Online], Available: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12585.
doi:10.1002/mp.12585 Google Scholar
12. Kurrant, D., E. Fear, A. Baran, and J. LoVetri, "Integrating prior information into microwave tomography Part 2: Impact of errors in prior information on microwave tomography image quality," Medical Physics (Lancaster), Vol. 44, No. 12, 6482-6503, 2017. Google Scholar
13. Ostadrahimi, M., P. Mojabi, A. Zakaria, J. LoVetri, and L. Shafai, "Enhancement of Gauss-Newton inversion method for biological tissue imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 9, 3424-3434, 2013.
doi:10.1109/TMTT.2013.2273758 Google Scholar
14. Neira, L. M., B. D. Van Veen, and S. C. Hagness, "High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6002-6014, 2017.
doi:10.1109/TAP.2017.2751668 Google Scholar
15. Edwards, K., N. Geddert, K. Krakalovich, R. Kruk, M. Asefi, J. Lovetri, C. Gilmore, I. Jeffrey, and , "Stored grain inventory management using neural-network-based parametric electromagnetic inversion," IEEE Access, Vol. 8, 207182-207192, 2020.
doi:10.1109/ACCESS.2020.3038312 Google Scholar
16. Li, L., L. Wang, F. Teixeira, L. Che, and T. Cui, "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1819-1825, 2018.
doi:10.1109/TAP.2018.2885437 Google Scholar
17. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2019.
doi:10.1109/TGRS.2018.2869221 Google Scholar
18. Khoshdel, V., M. Asefi, A. Ashraf, and J. LoVetri, "Full 3D microwave breast imaging using a deep-learning technique," Journal of Imaging, Vol. 6, No. 8, 80, Aug. 2020, [Online], Available: http://dx.doi.org/10.3390/jimaging6080080.
doi:10.3390/jimaging6080080 Google Scholar
19. Khoshdel, V., M. Asefi, A. Ashraf, and J. LoVetri, "A multi-branch deep convolutional fusion architecture for 3D microwave inverse scattering: Stored grain application," Neural Computing and Applications, 2021, [Online], Available: https://doi.org/10.1007/s00521-021-05970-3. Google Scholar
20. Guo, R., Z. Lin, T. Shan, X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Physics embedded deep neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Early Access Article, 1-1, 2021. Google Scholar
21. Zhou, Y., Y. Zhong, Z.Wei, T. Yin, and X. Chen, "An improved deep learning scheme for solving 2- D and 3-D inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2853-2863, 2021.
doi:10.1109/TAP.2020.3027898 Google Scholar
22. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402 Google Scholar
23. Gilmore, C., M. Asefi, J. Paliwal, and J. LoVetri, "Industrial scale electromagnetic grain bin monitoring," Computers and Electronics in Agriculture, Vol. 136, 210-220, 2017.
doi:10.1016/j.compag.2017.03.005 Google Scholar
24. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Vol. 11, Wiley, 1991.
25. Zhdanov, M. S., Geophysical Inverse Theory and Regularization Problems, Vol. 36, Elsevier, 2002.
doi:10.1016/S0076-6895(02)80037-3
26. Guo, R., X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Supervised descent learning technique for 2-D microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3550-3554, 2019.
doi:10.1109/TAP.2019.2902667 Google Scholar
27. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, Wiley Online Library, 2018.
doi:10.1002/9781119311997
28. Nemez, K., M. Asefi, A. Baran, and J. LoVetri, "A faceted magnetic field probe resonant chamber for 3D breast MWI: A synthetic study," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-3, IEEE, 2016. Google Scholar
29. Chen, X., Z. Wei, M. Li, and P. Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Progress In Electromagnetics Research, Vol. 167, 67-81, 2020.
doi:10.2528/PIER20030705 Google Scholar
30. LoVetri, J., M. A. Asefi, C. Gilmore, and I. Jeffrey, "Innovations in electromagnetic imaging technology: The stored-grain-monitoring case," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 33-42, 2020.
doi:10.1109/MAP.2020.3003206 Google Scholar
31. Li, M., R. Guo, K. Zhang, Z. Lin, F. Yang, S. Xu, X. Chen, A. Massa, and A. Abubakar, "Machine learning in electromagnetics with applications to biomedical imaging: A review," IEEE Antennas and Propagation Magazine, Vol. 63, No. 3, 39-51, 2021.
doi:10.1109/MAP.2020.3043469 Google Scholar
32. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019.
doi:10.3390/s19184050 Google Scholar
33. Edwards, K., V. Khoshdel, M. Asfi, J. LoVetri, C. Gilmore, and I. Jeffrey, "A machine learning workflow for tumour detection in breasts using 3D microwave imaging," Electronics, Vol. 10, No. 6, 2021, [Online], Available: https://www.mdpi.com/2079-9292/10/6/674.
doi:10.3390/electronics10060674 Google Scholar
34. Reimer, T., M. Solis, and S. Pistorius, "The application of an iterative structure to the delay-and-sum and the delay-multiply-and-sum beamformers in breast microwave imaging," Diagnostics, Vol. 10, 411, June 2020.
doi:10.3390/diagnostics10060411 Google Scholar
35. Zakaria, A., I. Jeffrey, J. LoVetri, and A. Zakaria, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.
doi:10.2528/PIER13080706 Google Scholar
36. Geddert, N., "An electromagnetic hybridizable discontinuous Galerkin method forward solver with high-order geometry for inverse problems,", 2020. Google Scholar