1. Wang, Z., Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, "Reflection-free one-way edge modes in a gyromagnetic photonic crystal," Phys. Rev. Lett., Vol. 100, 013905, 2008.
doi:10.1103/PhysRevLett.100.013905 Google Scholar
2. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Phys. Rev. Lett., Vol. 114, 114301, 2015.
doi:10.1103/PhysRevLett.114.114301 Google Scholar
3. Xue, H., Y. Yang, G. Liu, F. Gao, Y. Chong, and B. Zhang, "Realization of an acoustic third-order topological insulator," Phys. Rev. Lett., Vol. 122, 244301, Jun. 2019.
doi:10.1103/PhysRevLett.122.244301 Google Scholar
4. Ao, X., Z. Lin, and C. T. Chan, "One way edge modes in a magneto-optical honeycomb photonic crystal," Phys. Rev. B, Vol. 80, 033105, 2009.
doi:10.1103/PhysRevB.80.033105 Google Scholar
5. Tsaolamprou, A. C., M. Kafesaki, C. M. Soukoulis, E. N. Economou, and T. Koschny, "Chiral topological surface states on a finite square photonic crystal bounded by air," Physical Review Applied, Vol. 16, 044011, 2021.
doi:10.1103/PhysRevApplied.16.044011 Google Scholar
6. Zhao, R., G. D. Xie, M. L. N. Chen, Z. Lan, Z. Huang, and W. E. I. Sha, "First-principle calculation of Chern number in gyrotropic photonic crystals," Optics Express, Vol. 28, 4638, 2020.
doi:10.1364/OE.380077 Google Scholar
7. Feng, Z., S. Tan, L. Tsang, and E. Li, "Band characterization of topological photonic crystals using the broadband Green's function technique," Optics Express, Vol. 28, No. 19, 27223, 2020.
doi:10.1364/OE.400205 Google Scholar
8. Tsang, L., T.-H. Liao, and S. Tan, "Calculation of bands and band field solutions in topological acoustics using the broadband Green's function-KKR-multiple scattering method," Progress In Electromagnetic Research, Vol. 171, 137-158, 2021.
doi:10.2528/PIER21081706 Google Scholar
9. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152 Google Scholar
10. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in face- centered-cubic dielectric media," Phys. Rev. Lett., Vol. 65, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646 Google Scholar
11. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, 8565-8571, 1991.
doi:10.1103/PhysRevB.44.8565 Google Scholar
12. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
doi:10.2307/j.ctvcm4gz9
13. Nicolet, A., S. Guenneau, C. Geuzainec, and F. Zollaa, "Modelling of electromagnetic waves in periodic media with finite elements," Journal of Comp. and Appl. Math., Vol. 168, 321-329, 2004.
doi:10.1016/j.cam.2003.07.002 Google Scholar
14. Jin, J. M., Finite Element Method in Electromagnetics, 3rd Ed., Wiley, 2014.
15. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green's function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901 Google Scholar
16. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scattering using broadband Green's function with low wavenumber extraction (BBGFL)," Optics Express, Vol. 24, 945-965, 2016.
doi:10.1364/OE.24.000945 Google Scholar
17. Gao, R., L. Tsang, S. Tan, and T.-H. Liao, "Band calculations using broadband Green's functions and the KKR method with applications to magneto-optics and photonic crystals," Journal of Optical Society of America B, Vol. 37, 3896-3907, 2020.
doi:10.1364/JOSAB.400824 Google Scholar
18. Gao, R., L. Tsang, S. Tan, and T.-H. Liao, "Broadband Green's function-KKR-multiple scattering method for calculations of normalized band field solutions in magnetic-optics crystals," Journal of Optical Society of America B, Vol. 38, 3159-3171, 2021.
doi:10.1364/JOSAB.422574 Google Scholar
19. Tan, S. and L. Tsang, "Efficient broadband evaluations of lattice Green's functions via imaginary wavenumber components extractions," Progress In Electromagnetics Research, Vol. 164, 63-74, 2019. Google Scholar
20. Sanamzadeh, M. and L. Tsang, "Fast and broad band calculation of the dyadic Green's function in the rectangular cavity; An imaginary wave number extraction technique," Progress In Electromagnetic Research C, Vol. 96, 243-258, 2019.
doi:10.2528/PIERC19090301 Google Scholar
21. Liao, T.-H., L. Tsang, and W. Kwek, "Broadband Green's Funtion (BBGFL) method with imaginary wavenumber extractions for simulations of radiated emissions from irregular shaped printed circuit board," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 2209-2216, Oct. 2020.
doi:10.1109/TEMC.2019.2939136 Google Scholar
22. Korringa, J., "On the calculation of the energy of a Bloch wave in a metal," Physica, Vol. 13, 392-400, 1947.
doi:10.1016/0031-8914(47)90013-X Google Scholar
23. Kohn, W. and N. Rostoker, "Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium," Phys. Rev., Vol. 94, 1111-1120, 1954.
doi:10.1103/PhysRev.94.1111 Google Scholar
24. Ham, F. S. and B. Segall, "Energy bands in periodic lattices --- Green's function method," Phys. Rev., Vol. 124, No. 6, 1786-1796, 1961.
doi:10.1103/PhysRev.124.1786 Google Scholar
25. Wang, X., X. G. Zhang, Q. Yu, and B. N. Harmon, "Multiple scattering theory for electromagnetic waves," Phys. Rev. B, Vol. 47, No. 8, 4161-4167, 1993.
doi:10.1103/PhysRevB.47.4161 Google Scholar
26. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Phys. Rev. B, Vol. 48, 7767-7771, 1993.
doi:10.1103/PhysRevB.48.7767 Google Scholar
27. Kafesaki, M. and F. Economou, "Multiple-scattering theory for three-dimensional periodic acoustic composites," Phys. Rev. B, Vol. 60, 11993-12001, 1999.
doi:10.1103/PhysRevB.60.11993 Google Scholar
28. Liu, Z., C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, "Elastic wave scattering by periodic structures of spherical objects: Theory and experiment," Phys. Rev. B, Vol. 62, 2446-2457, 2000.
doi:10.1103/PhysRevB.62.2446 Google Scholar
29. Kambe, K., "Theory of low-energy electron diffraction," I. Application of the Cellular Method to Monatomic Layers, Vol. 22, No. 3, 322-330, 1967. Google Scholar
30. Kambe, K., "Theory of electron diffraction by crystals," I. Green's Function and Integral Equation, Vol. 22, No. 4, 422-431, 1967. Google Scholar
31. Kambe, K., "Theory of low-energy electron diffraction," II. Cellular Method for Complex Monolayers and Multilayers, Vol. 23, No. 9, 1280-1294, 1968. Google Scholar
32. Jia, P.-H., et al. "Two fold domain decomposition method for the analysis of multiscale composite structures," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6090-6103, Sep. 2019.
doi:10.1109/TAP.2019.2925120 Google Scholar
33. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, 426 pages, Wiley Interscience, 2000.
doi:10.1002/0471224286
34. Foldy, L. L., "The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers," Phys. Rev., Vol. 67, 107-119, 1945.
doi:10.1103/PhysRev.67.107 Google Scholar
35. Lax, M., "Multiple scattering of waves," Rev. Mod. Phys., Vol. 23, No. 4, 287-310, 1951.
doi:10.1103/RevModPhys.23.287 Google Scholar
36. Waterman, P. C. and R. Truell, "Multiple scattering of waves," Journal of Mathematical Physics, Vol. 2, No. 4, 512-537, 1961.
doi:10.1063/1.1703737 Google Scholar
37. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, 1978.
38. Tsang, L., J. A. Kong, and T. Habashy, "Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus-Yevick approximation," Journal of the Acoustical Society of America, Vol. 71, No. 3, 552-558, Mar. 1982.
doi:10.1121/1.387524 Google Scholar
39. Tsang, L., J. A. Kong, and R. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985.
40. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2: Numerical Simulations, 705 pages, Wiley Interscience, 2001.
doi:10.1002/0471224308
41. Mishchenko, M. I., L. D. Travis, and A. A. Laci's, Multiple Scattering of Light by Particles, Radiative Transfer and Coherent Backscattering, Cambridge University Press, 2006.
42. Stein, S., "Addition theorem for spherical wave functions," Quarterly of Applied Mathematics, Vol. 19, No. 1, 15-24, 1961.
doi:10.1090/qam/120407 Google Scholar
43. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton University Press, 1960.
44. Cruzan, O. R., "Translational addition theorem for spherical vector wave functions," Q. Appl. Math, Vol. 20, 33-40, 1962.
doi:10.1090/qam/132851 Google Scholar
45. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
46. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover, 1956.
47. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proceedings of IEEE, Vol. 53, 805-812, 1965.
doi:10.1109/PROC.1965.4058 Google Scholar
48. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2007.
49. Huang, H., L. Tsang, A. Colliander, R. Shah, X. Xu, and S. H. Yueh, "Multiple scattering of waves by complex objects using hybrid method of T-matrix and foldy-lax equations using vector spherical waves and vector spheroidal waves," Progress In Electromagnetic Research, Vol. 168, 87-111, 2020.
doi:10.2528/PIER20080409 Google Scholar
50. Gu, W., L. Tsang, A. Colliander, and S. Yueh, "Propagation of waves in vegetations using a hybrid method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6752-6761, Oct. 2021.
doi:10.1109/TAP.2021.3069487 Google Scholar
51. Gu, W., L. Tsang, A. Colliander, and S. Yueh, "Multifrequency full-wave simulations of vegetation using a hybrid method," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 275-285, Jan. 2022.
doi:10.1109/TMTT.2021.3107313 Google Scholar
52. Tsang, L., T.-H. Liao, R. Gao, H. Xu, W. Gu, and J. Zhu, "Theory of microwave remote sensing of vegetation effects, soop and rough soil surface backscattering," Remote Sensing, Vol. 14, No. 15, 2022.
doi:10.3390/rs14153640 Google Scholar
53. Tan, S. and L. Tsang, "Green functions, including scatterers, for photonic crystals and metamaterials," Journal of Optical Society of America B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450 Google Scholar
54. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green's function," Opt. Lett., Vol. 42, No. 22, 4667-4670, Nov. 2017.
doi:10.1364/OL.42.004667 Google Scholar
55. Tsang, L., K.-H. Ding, and S. Tan, "Broadband point source Green's function in a one-dimensional infinite periodic lossless medium based on BBGFL with modal method," Progress In Electromagnetics Research, Vol. 163, 51-77, 2018.
doi:10.2528/PIER18071802 Google Scholar
56. Tsang, L. and S. Tan, "Full wave simulations of photonic crystals and metamaterials using the broadband Green's functions,", US patent number 11,087,043, Aug. 10, 2021. Google Scholar
57. Gu, W., L. Tsang, A. Colliander, and S. Yueh, "Hybrid method for full-wave simulations of forests at L-band," IEEE Access, Vol. 10, 105898-105909, 2022.
doi:10.1109/ACCESS.2022.3211323 Google Scholar
58. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.
59. Sarabandi, K., Foundations of Applied Electromagnetics, Michigan Publishing, 2022.