1. Bender, C. M. and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT symmetry," Phys. Rev. Lett., Vol. 80, No. 24, 5243, 1998.
doi:10.1103/PhysRevLett.80.5243 Google Scholar
2. El-Ganainy, C. M., K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, "Non-Hermitian physics and PT symmetry," Nat. Phys., Vol. 14, No. 1, 11-19, 2018.
doi:10.1038/nphys4323 Google Scholar
3. Gong, Z. P., Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, "Topological phases of non-Hermitian systems," Phys. Rev. X, Vol. 8, No. 3, 031079, 2018. Google Scholar
4. Bergholtz, E. J., J. C. Budich, and F. K. Kunst, "Exceptional topology of non-Hermitian systems," Rev. Mod. Phys., Vol. 91, No. 1, 015005, 2021.
doi:10.1103/RevModPhys.93.015005 Google Scholar
5. Ramezani, H., T. Kottos, R. El-Ganainy, and D. N. Christodoulides, "Unidirectional nonlinear PT-symmetric optical structures," Phys. Rev. A, Vol. 82, No. 4, 043803, 2010.
doi:10.1103/PhysRevA.82.043803 Google Scholar
6. Lin, Z., H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, "Unidirectional invisibility induced by PT-symmetric periodic structures," Phys. Rev. Lett., Vol. 106, No. 21, 213901, 2011.
doi:10.1103/PhysRevLett.106.213901 Google Scholar
7. Regensburger, A., C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature, Vol. 488, No. 8, 167-171, 2012.
doi:10.1038/nature11298 Google Scholar
8. Liu, Z. P., J. Zhang, Ş. K. Ozdemir, B. Peng, H. Jing, X.-Y. Lu, C.-W. Li, L. Yang, F. Nori, and Y. Liu, "Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition," Phys. Rev. Lett., Vol. 117, No. 11, 110802, 2016.
doi:10.1103/PhysRevLett.117.110802 Google Scholar
9. Chen, W., Ş. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, No. 8, 192-196, 2017.
doi:10.1038/nature23281 Google Scholar
10. Hodaei, H., A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Enhanced sensitivity at higher-order exceptional points," Nature, Vol. 548, No. 8, 187-191, 2017.
doi:10.1038/nature23280 Google Scholar
11. Chen, P.-Y., M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, "Generalized parity-time symmetry condition for enhanced sensor telemetry," Nat. Electron., Vol. 1, No. 5, 297-304, 2018.
doi:10.1038/s41928-018-0072-6 Google Scholar
12. Chong, Y. D., L. Ge, and A. D. Stone, "PT-symmetry breaking and laser-absorber modes in optical scattering systems," Phys. Rev. Lett., Vol. 106, No. 9, 093902, 2011.
doi:10.1103/PhysRevLett.106.093902 Google Scholar
13. Liertzer, M., L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, "Pump-induced exceptional points in lasers," Phys. Rev. Lett., Vol. 108, No. 17, 173901, 2012.
doi:10.1103/PhysRevLett.108.173901 Google Scholar
14. Feng, L., Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, "Single-mode laser by parity-time symmetry breaking," Science, Vol. 346, No. 6212, 972-975, 2014.
doi:10.1126/science.1258479 Google Scholar
15. Hodaei, H., M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, "Parity-time-symmetric microring lasers," Science, Vol. 346, No. 6212, 975-978, 2014.
doi:10.1126/science.1258480 Google Scholar
16. Doppler, J., A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, "Dynamically encircling an exceptional point for asymmetric mode switching," Nature, Vol. 537, No. 9, 76-79, 2016.
doi:10.1038/nature18605 Google Scholar
17. Xu, H., D. Mason, L. Jiang, and J. G. E. Harris, "Topological energy transfer in an optomechanical system with exceptional points," Nature, Vol. 537, No. 9, 80-83, 2016.
doi:10.1038/nature18604 Google Scholar
18. Li, Z. P., G. T. Cao, C. H. Li, S. H. Dong, Y. Deng, X. K. Liu, J. S. Ho, and C. W. Qiu, "Non-Hermitian electromagnetic metasurfaces at exceptional points," Prog. Electromagn. Res., Vol. 171, 1-20, 2021.
doi:10.2528/PIER21051703 Google Scholar
19. Yan, Q. H., H. S. Chen, and Y. H. Yang, "Non-Hermitian skin effect and delocalized edge states in photonic crystals with anomalous parity-time symmetry," Prog. Electromagn. Res., Vol. 172, 33-40, 2021.
doi:10.2528/PIER21111602 Google Scholar
20. Christensen, J., M. Willatzen, V. R. Velasco, and M.-H. Lu, "Parity-time synthetic phononic media," Phys. Rev. Lett., Vol. 116, No. 20, 207601, 2016.
doi:10.1103/PhysRevLett.116.207601 Google Scholar
21. Hou, Z. and B. Assouar, "Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials," J. Appl. Phys., Vol. 123, No. 8, 085101, 2018.
doi:10.1063/1.5009129 Google Scholar
22. Wu, Q., Y. Chen, and G. Huang, "Asymmetric scattering of flexural waves in a parity-time symmetric metamaterial beam," J. Acoust. Soc. Am., Vol. 146, No. 1, 850, 2019.
doi:10.1121/1.5116561 Google Scholar
23. Domínguez-Rocha, V., R. Thevamaran, F. M. Ellis, and T. Kottos, "Environmentally induced exceptional points in elastodynamics," Phys. Rev. Applied, Vol. 13, No. 1, 014060, 2020.
doi:10.1103/PhysRevApplied.13.014060 Google Scholar
24. Shmuel, G. and N. Moiseyev, "Linking scalar elastodynamics and non-Hermitian quantum mechanics," Phys. Rev. Applied, Vol. 13, No. 2, 024074, 2020.
doi:10.1103/PhysRevApplied.13.024074 Google Scholar
25. Kononchuk, R. and T. Kottos, "Orientation-sensed optomechanical accelerometers based on exceptional points," Phys. Rev. Research, Vol. 2, No. 2, 023252, 2020.
doi:10.1103/PhysRevResearch.2.023252 Google Scholar
26. Rosa, M. I. N., M. Mazzotti, and M. Ruzzene, "Exceptional points and enhanced sensitivity in PT-symmetric continuous elastic media," J. Mech. Phys. Solids, Vol. 149, 104325, 2021.
doi:10.1016/j.jmps.2021.104325 Google Scholar
27. Achilleos, V., G. Theocharis, O. Richoux, and V. Pagneux, "Non-Hermitian acoustic metamaterials: Role of exceptional points in sound absorption," Phys. Rev. B, Vol. 95, No. 14, 144303, 2017.
doi:10.1103/PhysRevB.95.144303 Google Scholar
28. Yang, H., X. Zhang, Y. Liu, Y. Yao, F. Wu, and D. Zhao, "Novel acoustic flat focusing based on the asymmetric response in parity-time-symmetric phononic crystals," Sci. Rep., Vol. 9, 10048, 2019.
doi:10.1038/s41598-019-46467-3 Google Scholar
29. Zhu, X. F., H. Ramezani, C. Z. Shi, J. Zhu, and X. Zhang, "PT-symmetric acoustics," Phys. Rev. X, Vol. 4, No. 3, 031042, 2014. Google Scholar
30. Fleury, R., D. Sounas, and A. Alù, "An invisible acoustic sensor based on parity-time symmetry," Nat. Commun., Vol. 6, 5905, 2015.
doi:10.1038/ncomms6905 Google Scholar
31. Shi, C. Z., M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, and X. Zhang, "Accessing the exceptional points of parity-time symmetric acoustics," Nat. Commun., Vol. 7, 11110, 2016.
doi:10.1038/ncomms11110 Google Scholar
32. Liu, T., X. Zhu, F. Chen, S. Liang, and J. Zhu, "Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal," Phys. Rev. Lett., Vol. 120, No. 12, 124502, 2018.
doi:10.1103/PhysRevLett.120.124502 Google Scholar
33. Ding, K., G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, "Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization," Phys. Rev. X, Vol. 6, No. 2, 021007, 2016. Google Scholar
34. Ding, K., G. Ma, Z. Q. Zhang, and C. T. Chan, "Experimental demonstration of an anisotropic exceptional point," Phys. Rev. Lett., Vol. 121, No. 8, 085702, 2018.
doi:10.1103/PhysRevLett.121.085702 Google Scholar
35. Zhu, W., X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen, "Simultaneous observation of a topological edge state and exceptional points in an open and non-Hermitian acoustic system," Phys. Rev. Lett., Vol. 121, No. 121, 124501, 2018.
doi:10.1103/PhysRevLett.121.124501 Google Scholar
36. Shen, C., J. F. Li, X. Y. Peng, and S. A. Cummer, "Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems," Phys. Rev. Materials, Vol. 2, No. 12, 125203, 2018.
doi:10.1103/PhysRevMaterials.2.125203 Google Scholar
37. Gu, Z., H. Gao, T. Liu, S. Liang, S. An, Y. Li, and J. Zhu, "Topologically protected exceptional point with local non-Hermitian modulation in an acoustic crystal," Phys. Rev. Applied, Vol. 15, No. 1, 014025, 2021.
doi:10.1103/PhysRevApplied.15.014025 Google Scholar
38. Wang, X., X. S. Fang, D. X. Mao, Y. Jing, and Y. Li, "Extremely asymmetrical acoustic metasurface mirror at the exceptional point," Phys. Rev. Lett., Vol. 123, No. 21, 214302, 2019.
doi:10.1103/PhysRevLett.123.214302 Google Scholar
39. Jia, D., Y. Wang, Y. Ge, S. Q. Yuan, and H. X. Sun, "Tunable topological refractions in valley sonic crystals with triple valley hall phase transitions," Prog. Electromagn. Res., Vol. 172, 13-22, 2021.
doi:10.2528/PIER21102002 Google Scholar
40. Zhen, B., C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, "Spawning rings of exceptional points out of Dirac cones," Nature, Vol. 525, No. 9, 354-358, 2015.
doi:10.1038/nature14889 Google Scholar
41. Wang, H. F., B. Y. Xie, S. K. Gupta, X. Y. Zhu, L. Liu, X. P. Liu, M. H. Lu, and Y. F. Chen, "Exceptional concentric rings in a non-Hermitian bilayer photonic system," Phys. Rev. B, Vol. 100, No. 16, 165134, 2019.
doi:10.1103/PhysRevB.100.165134 Google Scholar
42. Kolkowski, R., S. Kovaios, and A. F. Koenderink, "Pseudochirality at exceptional rings of optical metasurfaces," Phys. Rev. Research, Vol. 3, No. 2, 023185, 2021.
doi:10.1103/PhysRevResearch.3.023185 Google Scholar
43. Cerjan, A., S. Huang, M. Wang, K. P. Chen, Y. D. Chong, and M. C. Rechtsman, "Experimental realization of a Weyl exceptional ring," Nat. Photon., Vol. 13, No. 9, 623-628, 2019.
doi:10.1038/s41566-019-0453-z Google Scholar
44. Xu, Y., S. T. Wang, and L. M. Duan, "Weyl exceptional rings in a three-dimensional dissipative cold atomic gas," Phys. Rev. Lett., Vol. 118, No. 4, 045701, 2017.
doi:10.1103/PhysRevLett.118.045701 Google Scholar
45. Liu, J. J., Z. W. Li, Z. G. Chen, W. Y. Tang, A. Chen, B. Liang, G. C. Ma, and J. C. Cheng, "Experimental realization ofWeyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal," Phys. Rev. Lett., Vol. 129, No. 8, 084301, 2022.
doi:10.1103/PhysRevLett.129.084301 Google Scholar