Vol. 176
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-12-14
Inverse-Designed Metamaterials for on-Chip Combinational Optical Logic Circuit
By
Progress In Electromagnetics Research, Vol. 176, 55-65, 2023
Abstract
Optical analog computing has recently sparked growing interest due to the appealing characteristics of low energy consumption, parallel processing, and ultrafast speed, spawning it complementary to conventional electronic computing. As the basic computing unit, optical logic operation plays a pivotal role for integrated photonics. However, the reported optical logic operations are volumetric and single-functional, which considerably hinders the practical cascadability and complex computing requirement. Here, we propose an on-chip combinational optical logic circuit using inverse design. By precisely engineering the scattering matrix of each small-footprint logic gate, all basic optical logic gates (OR, XOR, NOT, AND, XNOR, NAND, and NOR) are realized. On this foundation, we explore the assembly of these basic logic gates for general-purpose combinational logic circuits, including optical half-adder and code converter. Our work provides a path for the development of integrated, miniaturized, and cascadable photonic processor for future optical computing technologies.
Citation
Qingze Tan, Chao Qian, and Hongsheng Chen, "Inverse-Designed Metamaterials for on-Chip Combinational Optical Logic Circuit," Progress In Electromagnetics Research, Vol. 176, 55-65, 2023.
doi:10.2528/PIER22091502
References

1. Caulfield, H. J. and S. Dolev, "Why future supercomputing requires optics," Nat. Photon., Vol. 4, 261-263, 2010.        Google Scholar

2. Silva, A., F. Monticone, G. Cadtaldi, V. Galdi, A. Alu, and N. Engheta, "Performing mathematical operations with metamaterials," Science, Vol. 343, 160-163, 2014.        Google Scholar

3. Zhou, H., J. Dong, J. Cheng, W. Dong, C. Huang, Y. Shen, Q. Zhang, M. Gu, C. Qian, H. Chen, Z. Ruan, and X. Zhang, "Photonic matrix multiplication lights up photonic accelerator and beyond," Light: Sci. Appl., Vol. 11, 30, 2022.        Google Scholar

4. Miller, D. A. B., "Are optical transistors the logical next step?," Nat. Photon., Vol. 4, 3-5, 2010.        Google Scholar

5. Urbas, A. M., Z. Jacob, L. D. Negro, N. Engheta, A. D. Boardman, P. Egan, et al. "Roadmap on optical metamaterials," J. Opt., Vol. 18, 093005, 2016.        Google Scholar

6. Qian, C., X. Lin, Y. Yang, X. Xiong, H. Wang, E. Li, I. Kaminer, B. Zhang, and H. Chen, "Experimental observation of superscattering," Phy. Rev. Lett., Vol. 122, 063901, 2019.        Google Scholar

7. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photon., Vol. 14, 383-390, 2020.        Google Scholar

8. Zhen, Z., C. Qian, Y. Jia, Z. Fan, R. Hao, T. Cai, B. Zheng, H. Chen, and E. Li, "Realizing transmitted metasurface cloak by a tandem neural network," Photon. Res., Vol. 9, B229-B235, 2021.        Google Scholar

9. Qian, C. and H. Chen, "A perspective on the next generation of invisibility cloaks --- Intelligent cloaks," Appl. Phys. Lett., Vol. 118, 180501, 2021.        Google Scholar

10. Wang, Z., C. Qian, T. Cai, L. Tian, Z. Fan, J. Liu, Y. Shen, L. Jing, J. Jin, E. Li, B. Zheng, and H. Chen, "Demonstration of spider-eyes-like intelligent antennas for dynamically perceiving incoming waves," Adv. Intell. Syst., Vol. 3, 2100066, 2021.        Google Scholar

11. Cai, T., S. Tang, B. Zheng, G.Wang, W. Ji, C. Qian, Z.Wang, E. Li, and H. Chen, "Ultrawideband chromatic aberration-free meta-mirrors," Adv. Photon., Vol. 3, 016001, 2021.        Google Scholar

12. Huang, M., B. Zheng, T. Cai, X. Li, J. Liu, C. Qian, and H. Chen, "Machine-learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, No. 9, 2022.        Google Scholar

13. Jia, Y., C. Qian, Z. Fan, Y. Ding, Z. Wang, D. Wang, E. Li, B. Zheng, T. Cai, and H. Chen, "In-situ customized illusion enabled by global metasurface reconstruction," Adv. Funct. Mater., Vol. 2109331, 1-7, 2022.        Google Scholar

14. Ma, W., F. Cheng, and Y. Liu, "Deep-learning-enabled on-demand design of chiral metamaterials," ACS Nano, Vol. 12, 6326-6334, 2018.        Google Scholar

15. Malkiel, I., M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, "Plasmonic nanostructure design and characterization via Deep Learning," Light: Sci. Appl., Vol. 7, 60, 2018.        Google Scholar

16. Ma, W., F. Cheng, Y. Xu, Q. Wen, and Y. Liu, "Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy," Adv. Mater., Vol. 31, 1901111, 2019.        Google Scholar

17. Liu, Z., D. Zhu, K. T. Lee, A. S. Kim, L. Raju, and W. Cai, "Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques," Adv. Mater., Vol. 32, 1904790, 2020.        Google Scholar

18. Ma, W., Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, "Deep learning for the design of photonic structures," Nat. Photon., Vol. 15, 77-90, 2021.        Google Scholar

19. Ma, W., Y. Xu, B. Xiong, L. Deng, R. Peng, M. Wang, and Y. Liu, "Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning," Adv. Mater., Vol. 34, 2110022, 2022.        Google Scholar

20. Qiu, T., X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, "Deep learning: A rapid and efficient route to automatic metasurface design," Adv. Sci., Vol. 6, 1900128, 2019.        Google Scholar

21. Zhu, R., T. Qiu, J. Wang, S. Sui, C. Hao, T. Liu, Y. Li, M. Feng, A. Zhang, C. Qiu, and S. Qu, "Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning," Nat. Commun., Vol. 12, 2974, 2021.        Google Scholar

22. Tan, Q., B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, and H. Chen, "Broadband spin-locked metasurface retroreflector," Adv. Sci., Vol. 2201397, 1-7, 2022.        Google Scholar

23. Hua, Y., C. Qian, H. Chen, and H. Wang, "Experimental topology-optimized cloak for water waves," Mater. Today Phys., Vol. 27, 100754, 2022.        Google Scholar

24. Fan, Z., C. Qian, Y. Jia, Z. Wang, Y. Ding, D. Wang, L. Tian, E. Li, T. Cai, B. Zheng, I. Kaminer, and H. Chen, "Homeostatic neuro-metasurfaces for dynamic wireless channel management," Sci. Adv., Vol. 8, eabn7905, 2022.        Google Scholar

25. Qian, C., Z. Wang, H. Qian, T. Cai, B. Zheng, X. Lin, Y. Shen, I. Kaminer, E. Li, and H. Chen, "Dynamic recognition and mirage using neuro-metamaterials," Nat. Commun., Vol. 13, 2694, 2022.        Google Scholar

26. Qian, C., Y. Yang, Y. Hua, C. Wang, X. Lin, T. Cai, D. Ye, E. Li, I. Kaminer, and H. Chen, "Breaking the fundamental scattering limit with gain metasurfaces," Nat. Commun., Vol. 13, 4383, 2022.        Google Scholar

27. Yang, Y., L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, "Full-polarization 3D metasurface cloak with preserved amplitude and phase," Adv. Mater., Vol. 28, 6866-6871, 2016.        Google Scholar

28. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, 057605, 2004.        Google Scholar

29. Chen, H., B. Zheng, L. Shen, H. Wang, X Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, 1-6, 2013.        Google Scholar

30. Camacho, M., B. Edwards, and N. Engheta, "A single inverse-designed photonic structure that performs parallel computing," Nat. Commun., Vol. 12, 1466, 2021.        Google Scholar

31. Zhu, T., Y. Zhou, Y. Lou, H. Ye, M. Qiu, Z. Ruan, and S. Fan, "Plasmonic computing of spatial differentiation," Nat. Commun., Vol. 8, 15391, 2017.        Google Scholar

32. Khoram, E., A. Chen, D. Liu, L. Ying, Q. Wang, M. Yuan, and Z. Yu, "Nanophotonic media for artificial neural inference," Photon. Res., Vol. 7, 823-827, 2019.        Google Scholar

33. Zhu, Z., W. Ye, J. Ji, X. Yuan, and C. Zen, "High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals," Opt. Express, Vol. 14, 1783-1788, 2006.        Google Scholar

34. McCutcheon, M. W., G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, "All-optical conditional logic with a nonlinear photonic crystal nanocavity," Appl. Phys. Lett., Vol. 95, 221102, 2009.        Google Scholar

35. Liu, Q., Z. Ouyang, C.Wu, C. Liu, and J. C.Wang, "All optical half adder based on cross structures in two-dimensional photonic crystals," Opt. Express, Vol. 16, 18992-19000, 2008.        Google Scholar

36. Ishizaka, Y., Y. Kawaguchi, K. Saitoh, and M. Koshiba, "Design of ultra compact all-optical XOR and AND logic gates with low power consumption," Opt. Commun., Vol. 284, 3528-3533, 2011.        Google Scholar

37. Wei, H., Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, "Quantum dot based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks," Nano Lett., Vol. 11, 471-475, 2011.        Google Scholar

38. Fu, Y., X. Hu, and Q. Gong, "Silicon photonic crystal all optical logic gates," Phys. Lett. A, Vol. 377, 329-333, 2013.        Google Scholar

39. Wang, H., X. Yu, and X. Rong, "All-optical AND, XOR, and NOT logic gates based on Y-branch photonic crystal waveguide," Opt. Eng., Vol. 54, 077101, 2015.        Google Scholar

40. Fan, R., X. Yang, X. Meng, and X. Sun, "2D photonic crystal logic gates based on self-collimated effect," J. Phys. D: Appl. Phys., Vol. 49, 325104, 2016.        Google Scholar

41. Sang, Y., X. Wu, S. S. Raja, C. Wang, H. Li, Y. Ding, D. Liu, J. Zhou, H. Ahn, S. Gwo, and J. Shi, "Broadband multifunctional plasmonic logic gates," Adv. Opt. Mater., Vol. 6, 1701368, 2018.        Google Scholar

42. Manjappa, M., P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, "Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies," Nat. Commun., Vol. 9, 4056, 2018.        Google Scholar

43. Qian, C., X. Lin, X. Lin, J. Xu, Y. Sun, E. Li, B. Zhang, and H. Chen, "Performing optical logic operations by a diffractive neural network," Light: Sci. Appl., Vol. 9, 59, 2020.        Google Scholar

44. He, Y., P. Wang, C. Wang, J. Liu, H. Ye, X. Zhou, Y. Li, S. Chen, X. Zhang, and D. Fan, "All-optical signal processing in structured light multiplexing with dielectric meta-optics," ACS Photon., Vol. 7, 135, 2020.        Google Scholar

45. Dang, Z., T. Chen, Z. Ding, Z. Liu, X. Zhang, X. Jiang, and Z. Zhang, "Multiport all-logic optical switch based on thermally altered light paths in a multimode waveguide," Opt. Lett., Vol. 46, 3025-3028, 2021.        Google Scholar

46. Chao, M., B. Cheng, Q. Liu, W. Zhang, Y. Xu, and G. Song, "Novel optical XOR/OR logic gates based on topologically protected valley photonic crystals edges," J. Opt., Vol. 23, 115002, 2021.        Google Scholar

47. Zhao, Z., Y. Wang, X. Ding, H. Li, J. Fu, K. Zhang, S. N. Burokur, and Q. Wu, "Compact logic operator utilizing a single-layer metasurface," Photon. Res., Vol. 10, 316-322, 2022.        Google Scholar

48. Jensen, J. S. and O. Sigmund, "Topology optimization for nano-photonics," Laser Photon. Rev., Vol. 5, 308-321, 2011.        Google Scholar

49. Rodríguez, J. A., A. I. Abdalla, B. Wang, B. Lou, S. Fan, and M. A. Cappelli, "Inverse design of plasma metamaterial devices for optical computing," Phys. Rev. Applied, Vol. 16, 014023, 2021.        Google Scholar

50. Chung, H., J. Park, and S. V. Boriskina, "Inverse-designed waveguide-based biosensor for high-sensitivity, single-frequency detection of biomolecules," Nanophotonics, Vol. 11, 1427-1442, 2022.        Google Scholar