Vol. 177
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-02-13 Featured Article
Topological Edge Modes in One-Dimensional Photonic Artificial Structures (Invited)
By
Progress In Electromagnetics Research, Vol. 177, 1-20, 2023
Abstract
In recent years, topological states in photonic artificial structures have attracted great attention due to their robustness against certain disorders and perturbations. To readily understand the underlying principles, topological edge modes in one-dimensional (1D) system have been widely investigated, which bring aboutthe discovery of novel optical phenomena and devices. In this article, we review our recent advances in topological edge modes. We introduce the connection between topological orders and effective electromagnetic parameters of photonic artificial structures in band gaps, discuss experimental demonstration of robust topological modes and their potential applications in wireless power transfer, sensing and field of optics, and give a brief introduction of future opportunities in 1D topological photonics.
Citation
Jiajun Zheng, Zhiwei Guo, Yong Sun, Haitao Jiang, Yunhui Li, and Hong Chen, "Topological Edge Modes in One-Dimensional Photonic Artificial Structures (Invited)," Progress In Electromagnetics Research, Vol. 177, 1-20, 2023.
doi:10.2528/PIER22101202
References

1. Hasan, M. Z. and C. L. Kane, "Colloquium: Topological insulators," Reviews of Modern Physics, Vol. 82, No. 4, 3045-3067, 2010.
doi:10.1103/RevModPhys.82.3045        Google Scholar

2. Qi, X.-L. and S.-C. Zhang, "Topological insulators and superconductors," Reviews of Modern Physics, Vol. 83, No. 4, 1057-1110, 2011.
doi:10.1103/RevModPhys.83.1057        Google Scholar

3. Lu, L., J. D. Joannopoulos, and M. Soljacic, "Topological photonics," Nature Photonics, Vol. 8, No. 11, 821-829, 2014.
doi:10.1038/nphoton.2014.248        Google Scholar

4. Haldane, F. D. M. and S. Raghu, "Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry," Physical Review Letters, Vol. 100, No. 1, 013904, 2008.
doi:10.1103/PhysRevLett.100.013904        Google Scholar

5. Wang, Z., Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Vol. 461, No. 7265, 772-775, 2009.
doi:10.1038/nature08293        Google Scholar

6. Hafezi, M., S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, "Imaging topological edge states in silicon photonics," Nature Photonics, Vol. 7, No. 12, 1001-1005, 2013.
doi:10.1038/nphoton.2013.274        Google Scholar

7. Khanikaev, A. B., et al., "Photonic topological insulators," Nature Materials, Vol. 12, No. 3, 233-239, 2013.
doi:10.1038/nmat3520        Google Scholar

8. Wu, L. H. and X. Hu, "Scheme for achieving a topological photonic crystal by using dielectric material," Physical Review Letters, Vol. 114, No. 22, 223901, 2015.
doi:10.1103/PhysRevLett.114.223901        Google Scholar

9. Harari, G., M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, "Topological insulator laser: Theory," Science, Vol. 359, No. 6381, eaar4003, 2018.
doi:10.1126/science.aar4003        Google Scholar

10. Bandres, M. A., S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, "Topological insulator laser: Experiments," Science, Vol. 359, No. 5381, eaar4005, 2018.
doi:10.1126/science.aar4005        Google Scholar

11. Rechtsman, M. C., et al., "Photonic Floquet topological insulators," Nature, Vol. 496, No. 7444, 196-200, 2013.
doi:10.1038/nature12066        Google Scholar

12. Lin, H. and L. Lu, "Dirac-vortex topological photonic crystal fibre," Light: Science & Applications, Vol. 9, No. 1, 202, 2020.
doi:10.1038/s41377-020-00432-2        Google Scholar

13. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.

14. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059        Google Scholar

15. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486        Google Scholar

16. Zhu, W., X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen, "Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system," Physical Review Letters, Vol. 121, No. 12, 124501, 2018.
doi:10.1103/PhysRevLett.121.124501        Google Scholar

17. Zhu, S. and X. Zhang, "Metamaterials: Artificial materials beyond nature," National Science Review, Vol. 5, No. 2, 131-131, 2018.
doi:10.1093/nsr/nwy026        Google Scholar

18. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

19. Ahn, D., J. Park, C. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965        Google Scholar

20. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907        Google Scholar

21. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628        Google Scholar

22. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759        Google Scholar

23. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, e218, 2014.
doi:10.1038/lsa.2014.99        Google Scholar

24. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788        Google Scholar

25. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, Vol. 99, No. 6, 063908, 2007.
doi:10.1103/PhysRevLett.99.063908        Google Scholar

26. Cai, T., et al., "High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces," Physical Review Applied, Vol. 8, No. 3, 034033, 2017.
doi:10.1103/PhysRevApplied.8.034033        Google Scholar

27. Su, W. P., J. R. Schrieffer, and A. J. Heeger, "Solitons in polyacetylene," Physical Review Letters, Vol. 42, No. 25, 1698-1701, 1979.
doi:10.1103/PhysRevLett.42.1698        Google Scholar

28. Malkova, N., I. Hromada, X. Wang, G. Bryant, and Z. Chen, "Observation of optical Shockley-like surface states in photonic superlattices," Optics Letters, Vol. 34, No. 11, 1633-1635, 2009.
doi:10.1364/OL.34.001633        Google Scholar

29. Tan, W., Y. Sun, H. Chen, and S.-Q. Shen, "Photonic simulation of topological excitations in metamaterials," Scientific Reports, Vol. 4, 3842, 2014.
doi:10.1038/srep03842        Google Scholar

30. Poshakinskiy, A. V., A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, "Radiative topological states in resonant photonic crystals," Physical Review Letters, Vol. 112, No. 10, 107403, 2014.
doi:10.1103/PhysRevLett.112.107403        Google Scholar

31. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional systems," Physical Review X, Vol. 4, No. 2, 021017, 2014.
doi:10.1103/PhysRevX.4.021017        Google Scholar

32. Poddubny, A., A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, "Topological Majorana states in zigzag chains of plasmonic nanoparticles," ACS Photonics, Vol. 1, No. 2, 101-105, 2014.
doi:10.1021/ph4000949        Google Scholar

33. Ling, C. W., M. Xiao, S. F. Yu, and K. H. Fung, "Topological edge plasmon modes between diatomic chains of nanoparticles," Optics Express, Vol. 23, No. 3, 2021-2031, 2015.
doi:10.1364/OE.23.002021        Google Scholar

34. Poli, C., M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, "Selective enhancement of topologically induced interface states," Nature Communications, Vol. 6, 6710, 2015.
doi:10.1038/ncomms7710        Google Scholar

35. Shen, S. Q., Topological Insulators: Dirac Equation in Condensed Matter, 2nd Ed., Springer, 2017.
doi:10.1007/978-981-10-4606-3

36. Guan, G., H. Jiang, H. Li, Y. Zhang, H. Chen, and S. Y. Zhu, "Tunneling modes of photonic heterostructures consisting of single-negative materials," Applied Physics Letters, Vol. 88, No. 21, 211112, 2006.
doi:10.1063/1.2207218        Google Scholar

37. Guo, J., H. Chen, H. Li, and Y. Zhang, "Effective permittivity and permeability of one dimensional dielectric photonic crystal within a band gap," Chinese Physics B, Vol. 17, No. 7, 2544-2552, 2008.
doi:10.1088/1674-1056/17/7/034        Google Scholar

38. Shi, X., C. Xue, H. Jiang, and H. Chen, "Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals," Optics Express, Vol. 24, No. 16, 18580-18581, 2016.
doi:10.1364/OE.24.018580        Google Scholar

39. Huang, Q., Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, "Observation of a topological edge state in the X-ray band," Laser & Photonics Reviews, Vol. 13, No. 6, 1800339, 2019.
doi:10.1002/lpor.201800339        Google Scholar

40. Wang, Q., M. Xiao, H. Liu, S. N. Zhu, and C. T. Chan, "Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal," Physical Review B, Vol. 93, No. 4, 041415, 2016.
doi:10.1103/PhysRevB.93.041415        Google Scholar

41. Lemoult, F., N. Kaina, M. Fink, G. Lerosey, and , "Wave propagation control at the deep subwavelength scale in metamaterials," Nature Physics, Vol. 9, No. 1, 55-60, 2013.
doi:10.1038/nphys2480        Google Scholar

42. Fan, L., W. W. Yu, S. Y. Zhang, H. Zhang, and J. Ding, "Zak phases and band properties in acoustic metamaterials with negative modulus or negative density," Physical Review B, Vol. 94, No. 17, 174307, 2016.
doi:10.1103/PhysRevB.94.174307        Google Scholar

43. Zhu, W., Y.-Q. Ding, J. Ren, Y. Sun, Y. Li, H. Jiang, and H. Chen, "Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials," Physical Review B, Vol. 97, No. 19, 195307, 2018.
doi:10.1103/PhysRevB.97.195307        Google Scholar

44. Fan, C., X. Shi, F. Wu, Y. Li, H. Jiang, Y. Sun, and H. Chen, "Photonic topological transition in dimerized chains with the joint modulation of near-field and far-field couplings," Photonics Research, Vol. 10, No. 1, 41-49, 2022.
doi:10.1364/PRJ.441278        Google Scholar

45. Verbin, M., O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, "Observation of topological phase transitions in photonic quasicrystals," Physical Review Letters, Vol. 110, No. 7, 076403, 2013.
doi:10.1103/PhysRevLett.110.076403        Google Scholar

46. Lang, L., X. Cai, and S. Chen, "Edge states and topological phases in one-dimensional optical superlattices," Physical Review Letters, Vol. 108, No. 21, 220401, 2012.
doi:10.1103/PhysRevLett.108.220401        Google Scholar

47. Kraus, Y. E., Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, "Topological states and adiabatic pumping in quasicrystals," Physical Review Letters, Vol. 109, No. 10, 106402, 2012.
doi:10.1103/PhysRevLett.109.106402        Google Scholar

48. Feng, L., Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, "Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies," Nature Materials, Vol. 12, No. 2, 108-113, 2013.
doi:10.1038/nmat3495        Google Scholar

49. Shi, X., Y. Sun, C. Xue, and X. Hu, "Prediction of interface states in liquid surface waves with one-dimensional modulation," Physics Letters A, Vol. 383, No. 17, 2106-2109, 2019.
doi:10.1016/j.physleta.2019.04.002        Google Scholar

50. Zhang, D., J. Ren, T. Zhou, and B. Li, "Dark state, zero-index and topology in phononic metamaterials with negative mass and negative coupling," New Journal of Physics, Vol. 21, 093033, 2019.
doi:10.1088/1367-2630/ab3f6d        Google Scholar

51. Jiang, J., Z. W. Guo, Y. Q. Ding, Y. Sun, Y. H. Li, H. T. Jiang, and H. Chen, "Experimental demonstration of the robust edge states in a split-ring-resonator chain," Optics Express, Vol. 26, No. 10, 12891-12902, 2018.
doi:10.1364/OE.26.012891        Google Scholar

52. Bellec, M., U. Kuhl, G. Montambaux, and F. Mortessagne, "Tight-binding couplings in microwave artificial graphene," Physical Review B, Vol. 88, No. 11, 115437, 2013.
doi:10.1103/PhysRevB.88.115437        Google Scholar

53. Atala, M., M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, "Direct measurement of the Zak phase in topological Bloch bands," Nature Physics, Vol. 9, No. 12, 795-800, 2013.
doi:10.1038/nphys2790        Google Scholar

54. Xiao, M., G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, "Geometric phase and band inversion in periodic acoustic systems," Nature Physics, Vol. 11, No. 3, 240-244, 2015.
doi:10.1038/nphys3228        Google Scholar

55. Jiang, J., J. Ren, Z. W. Guo, W. W. Zhu, Y. Long, H. T. Jiang, and H. Chen, "Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators," Physical Review B, Vol. 101, No. 16, 165427, 2020.
doi:10.1103/PhysRevB.101.165427        Google Scholar

56. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976.

57. Guo, Z. W., J. Jiang, H. T. Jiang, J. Ren, and H. Chen, "Observation of topological bound states in a double Su-Schrieffer-Heeger chain composed of split ring resonators," Physical Review Research, Vol. 3, No. 1, 013122, 2021.
doi:10.1103/PhysRevResearch.3.013122        Google Scholar

58. Guo, Z. W., H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, "Asymmetric topological edge states in a quasiperiodic Harper chain composed of split-ring resonators," Optics Letters, Vol. 43, No. 20, 5142-5145, 2018.
doi:10.1364/OL.43.005142        Google Scholar

59. Hafezi, M., E. A. Delmer, M. D. Lukin, and J. M. Taylor, "Robust optical delay lines with topological protection," Nature Physics, Vol. 7, No. 11, 907-912, 2011.
doi:10.1038/nphys2063        Google Scholar

60. Song, J., F. Yang, Z. Guo, X.Wu, K. Zhu, J. Jiang, Y. Sun, Y. Li, H. Jiang, and H. Chen, "Wireless power transfer via topological modes in dimer chains," Physical Review Applied, Vol. 15, No. 1, 014009, 2021.
doi:10.1103/PhysRevApplied.15.014009        Google Scholar

61. Zhang, L., et al., "Demonstration of topological wireless power transfer," Science Bulletin, Vol. 66, No. 10, 974-980, 2021.
doi:10.1016/j.scib.2021.01.028        Google Scholar

62. Zeng, C., Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, and H. Chen, "Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system," Optics Express, Vol. 27, No. 20, 27562-27572, 2019.
doi:10.1364/OE.27.027562        Google Scholar

63. Yang, F., et al., "Actively controlled asymmetric edge states for directional wireless power transfer," Optics Express, Vol. 29, No. 5, 7844-7857, 2021.
doi:10.1364/OE.417887        Google Scholar

64. Hodaei, H., A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Enhanced sensitivity at higher-order exceptional points," Nature, Vol. 548, No. 7666, 187-191, 2017.
doi:10.1038/nature23280        Google Scholar

65. Chen, W. J., S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, No. 7666, 192-196, 2017.
doi:10.1038/nature23281        Google Scholar

66. Chen, P. Y. and R. El-Ganainy, "Exceptional points enhance wireless readout," Nature Electronics, Vol. 2, 323-324, 2019.
doi:10.1038/s41928-019-0293-3        Google Scholar

67. Guo, Z. W., T. Zhang, J. Song, H. Jiang, and H. Chen, "Sensitivity of topological edge states in a non-Hermitian dimer chain," Photonics Research, Vol. 9, No. 4, 574-582, 2021.
doi:10.1364/PRJ.413873        Google Scholar

68. Wu, J., F. Wu, K. Lv, Z. Guo, H. Jiang, Y. Sun, Y. Li, and H. Chen, "Giant Goos-Hanchen shift with a high reflectance assisted by interface states in photonic heterostructures," Physical Review A, Vol. 101, No. 5, 053838, 2020.
doi:10.1103/PhysRevA.101.053838        Google Scholar

69. Wang, Q., M. Xiao, H. Liu, S. Zhu, and C. T. Chan, "Optical interface states protected by synthetic weyl points," Physical Review X, Vol. 7, No. 3, 031032, 2017.
doi:10.1103/PhysRevX.7.031032        Google Scholar

70. Dong, L., H. Jiang, H. Chen, and Y. Shi, "Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals," Journal of Applied Physics, Vol. 107, No. 9, 093101, 2010.
doi:10.1063/1.3406152        Google Scholar

71. Du, G., H. Jiang, Z. Wang, and H. Chen, "Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals," Optics Letters, Vol. 34, No. 5, 578-580, 2009.
doi:10.1364/OL.34.000578        Google Scholar

72. Bergholtz, E. J., J. C. Budich, and F. K. Kunst, "Exceptional topology of non-Hermitian systems," Review of Modern Physics, Vol. 93, No. 1, 015005, 2021.
doi:10.1103/RevModPhys.93.015005        Google Scholar

73. Yao, S. Y. and Z. Wang, "Edge states and topological invariants of non-Hermitian systems," Physical Review Letters, Vol. 121, No. 8, 086803, 2018.
doi:10.1103/PhysRevLett.121.086803        Google Scholar

74. Lee, T. E., "Anomalous edge state in a non-Hermitian lattice," Physical Review Letters, Vol. 116, No. 13, 133903, 2016.
doi:10.1103/PhysRevLett.116.133903        Google Scholar

75. Xiong, Y., "Why does bulk boundary correspondence fail in some non-Hermitian topological models," Journal of Physics Communications, Vol. 2, No. 3, 035043, 2018.
doi:10.1088/2399-6528/aab64a        Google Scholar

76. Helbig, T., et al., "Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits," Nature Physics, Vol. 16, No. 7, 747, 2020.
doi:10.1038/s41567-020-0922-9        Google Scholar

77. Okuma, N. and M. Sato, "Hermitian zero modes protected by nonnormality: Application of pseudospectra," Physical Review B, Vol. 102, No. 1, 014203, 2020.
doi:10.1103/PhysRevB.102.014203        Google Scholar

78. Budich, J. C. and E. J. Bergholtz, "Non-Hermitian topological sensors," Physical Review Letters, Vol. 125, No. 18, 180403, 2020.
doi:10.1103/PhysRevLett.125.180403        Google Scholar

79. Li, J., R. Chu, J. Jain, and S.-Q. Shen, "Topological anderson insulator," Physical Review Letters, Vol. 102, No. 13, 136806, 2009.
doi:10.1103/PhysRevLett.102.136806        Google Scholar

80. Zhang, Z., B. Wu, J. Song, and H. Jiang, "Topological anderson insulator in electric circuits," Physical Review B, Vol. 100, No. 18, 184202, 2019.
doi:10.1103/PhysRevB.100.184202        Google Scholar

81. Stutzer, S., et al., "Photonic topological Anderson insulators," Nature, Vol. 560, 461-465, 2018.
doi:10.1038/s41586-018-0418-2        Google Scholar

82. Liu, G., e al., "Topological Anderson insulator in disordered photonic crystals," Physical Review Letters, Vol. 125, No. 13, 133603, 2020.
doi:10.1103/PhysRevLett.125.133603        Google Scholar

83. Meier, E. J., F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes, and B. Gadway, "Observation of the topological Anderson insulator in disordered atomic wires," Science, Vol. 362, 929, 2018.
doi:10.1126/science.aat3406        Google Scholar

84. Lin, Q., T. Lin, L. Xiao, K. Wang, W. Yi, and P. Xue, "Observation of non-Hermitian topological Anderson insulator in quantum dynamics," Nature Communications, Vol. 13, 3229, 2022.
doi:10.1038/s41467-022-30938-9        Google Scholar