1. Wagner, J., J. C. Barowski, and I. Rolfes, "A 3D printed elliptical mirror for material characterization using FMCW transceivers," Asia-Pacific Microwave Conference (APMC), 1-3, 2018. Google Scholar
2. Yaw, J. C., Measurement of dielectric material properties, application note, Rohde & Schwarz, 2012.
3. Junqueira, C., M. Perotoni, and D. R. Lima, "Microwave absorber materials characterization: Bulk absorbing and electrical/magnetic parameters," 2014 Inter. Telecom. Symposium (ITS), 1-5, 2014. Google Scholar
4. Zahid, A., H. T. Abbas, F. Sheikh, T. Kaiser, A. Zoha, M. Imran, and Q. H. Abbasi, "Monitoring health status and quality assessment of leaves using terahertz frequency," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1-2, 2019. Google Scholar
5. Aouabdia, N., B. Tahar, N. Eddine, and G. Alquie, "Rectangular patch resonator sensors for characterization of biological materials," IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), 1-2, 2014. Google Scholar
6. Obol, M., N. Al-Moayed, S. Naber, and M. Afsar, "Using coaxial probe for broadband microwave characterization of biological tissues," 38th European Microwave Conference, 1-4, 2008. Google Scholar
7. Samir, A., H. El-Sherif, S. Kishk, M. M. Abdel-Razzak, and M. Basha, "Linear and nonlinear properties of graphene at millimeter-wave for multiplier and mixer applications," Progress In Electromagnetics Research C, Vol. 81, 141-149, 2018.
doi:10.2528/PIERC17072403 Google Scholar
8. Bronckers, L. A. and A. B. Smolders, "Broadband material characterization method using a CPW with a novel calibration technique," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1763-1766, 2016.
doi:10.1109/LAWP.2016.2535115 Google Scholar
9. Kazemipour, A., S. K. Yee, M. Hudlicka, M. Salhi, T. Kleine-Ostmann, and T. Schrader, "Design and calibration of a compact quasi-optical system for material characterization in millimeter/sub-millimeter wave domain," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 6, 1438-1445, 2014.
doi:10.1109/TIM.2014.2376115 Google Scholar
10. Havrilla, M. and D. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249 Google Scholar
11. You, K. Y., Microwave Systems and Applications, 1-434, IntechOpen, 2016.
12. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, 3039-3046, 2012.
doi:10.1109/TIM.2012.2203450 Google Scholar
13. Jha, A. K. and M. J. Akhtar, "Cavity based RF sensor for dielectric characterization of liquids," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-4, 2014. Google Scholar
14. Obrzut, J., A. Hassan, and E. Garboczi, "Free space microwave non destructive characterization of composite materials," Proceedings of the ASNT, NDT of Composites, 1-4, 2015. Google Scholar
15. Will, B. and I. Rolfesv, "Application of the thru-network-line self-calibration method for free space material characterizations," 2012 International Conference on Electromagnetics in Advanced Applications, 1-4, 2012. Google Scholar
16. Chan, K. K., A. E. Tan, L. Li, and K. Rambabu, "Material characterization of arbitrarily shaped dielectrics based on reflected pulse characteristics," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1700-1709, 2015.
doi:10.1109/TMTT.2015.2418199 Google Scholar
17. Pometcu, L., A. Sharaiha, R. Benzerga, R. D. Tamas, and P. Pouliguen, "Method for material characterization in a non-anechoic environment," Applied Physics Letters, Vol. 108, No. 16, 2016.
doi:10.1063/1.4947100 Google Scholar
18. Barowski, J., M. Zimmermanns, and I. Rolfess, "Millimeter-wave characterization of dielectric materials using calibrated FMCW transceivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 8, 3683-3689, 2018.
doi:10.1109/TMTT.2018.2854180 Google Scholar
19. Hegazy, A. M., Remote material characterization using mmWave FMCW radar with complex baseband, MASc Thesis, UWSpace, 2021.
20. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Wiley, 2012.
21. Ramasubramanian, K. and B. Ginsburg, "AWR1243 sensor: Highly integrated 76-81-GHz radar front-end for emerging ADAS applications," Texas Instruments, White Paper, 2017. Google Scholar
22. Stove, A., "Linear FMCW radar techniques," Proceedings of the IEEE, Vol. 139, No. 5, 1992. Google Scholar
23. "AWR2243 single-chip 76- to 81-GHz FMCW transceiver," Texas Instruments, Datasheet, 2020. Google Scholar
24. Ramasubramanian, K., "Using a complex-baseband architecture in FMCW radar systems," Texas Instruments, White Paper, 2017. Google Scholar
25. Hegazy, A. M., M. Alizadeh, A. Samir, M. Chavoshi, M. A. Basha, and S. Safavi-Naeini, "3D-printed mmWave dual dielectric lens antenna for series-fed arrays," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1-2, 2022. Google Scholar
26. Vohra, N., J. S. Batista, and M. El-Shenawee, "Characterization of radar absorbing materials at 75 GHz-90 GHz using free-space system," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1-2, 2020. Google Scholar
27. Martinez, D. P., D. R. Somolinos, and B. P. Gallardo, "Electromagnetic characterization of materials through high accuracy free space measurements," 15th European Conference on Antennas and Propagation (EuCAP), 1-2, 2021. Google Scholar