1. Zografopoulos, Dimitrios C. and Odysseas Tsilipakos, "Recent advances in strongly resonant and gradient all-dielectric metasurfaces," Materials Advances, Vol. 4, No. 1, 11-34, 2023.
doi:10.1039/d2ma00910b Google Scholar
2. Jacobsen, Rasmus E., Samel Arslanagić, and Andrei V. Lavrinenko, "Water-based devices for advanced control of electromagnetic waves," Applied Physics Reviews, Vol. 8, No. 4, 041304, 2021.
doi:10.1063/5.0061648 Google Scholar
3. Zahra, Sidrish, Liang Ma, Wenjiao Wang, Jian Li, Dexu Chen, Yifeng Liu, Yuedan Zhou, Na Li, Yongjun Huang, and Guangjun Wen, "Electromagnetic metasurfaces and reconfigurable metasurfaces: A review," Frontiers in Physics, Vol. 8, 593411, 2021.
doi:10.3389/fphy.2020.593411 Google Scholar
4. Glybovski, Stanislav B., Sergei A. Tretyakov, Pavel A. Belov, Yuri S. Kivshar, and Constantin R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports, Vol. 634, 1-72, 2016.
doi:10.1016/j.physrep.2016.04.004 Google Scholar
5. Overvig, Adam and Andrea Alù, "Diffractive nonlocal metasurfaces," Laser & Photonics Reviews, Vol. 16, No. 8, 2100633, 2022.
doi:10.1002/lpor.202100633 Google Scholar
6. Grbic, Anthony and Stefano Maci, "EM metasurfaces [Guest Editorial]," IEEE Antennas and Propagation Magazine, Vol. 64, No. 4, 16-22, 2022.
doi:10.1109/map.2022.3178924 Google Scholar
7. Jahani, Saman and Zubin Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, No. 1, 23-36, 2016.
doi:10.1038/nnano.2015.304 Google Scholar
8. Jacobsen, Rasmus E., Andrei V. Lavrinenko, and Samel Arslanagić, "Reconfigurable dielectric resonators with imbedded impedance surfaces --- From enhanced and directional to suppressed scattering," Applied Physics Letters, Vol. 122, No. 8, 081701, 2023.
doi:10.1063/5.0139695 Google Scholar
9. Qian, Chao, Xiao Lin, Yi Yang, Xiaoyan Xiong, Huaping Wang, Erping Li, Ido Kaminer, Baile Zhang, and Hongsheng Chen, "Experimental observation of superscattering," Physical Review Letters, Vol. 122, No. 6, 063901, 2019.
doi:10.1103/physrevlett.122.063901 Google Scholar
10. Alù, Andrea, "Mantle cloak: Invisibility induced by a surface," Physical Review B --- Condensed Matter and Materials Physics, Vol. 80, No. 24, 245115, 2009.
doi:10.1103/physrevb.80.245115 Google Scholar
11. Monti, Alessio, Jason C. Soric, Andrea Alù, Alessandro Toscano, and Filiberto Bilotti, "Anisotropic mantle cloaks for TM and TE scattering reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1775-1788, 2015.
doi:10.1109/tap.2015.2396532 Google Scholar
12. Younesiraad, Hemn, Zahra Hamzavi-Zarghani, and Ladislau Matekovits, "Invisibility utilizing Huygens' metasurface based on mantle cloak and scattering suppression phenomen," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5181-5186, 2021.
doi:10.1109/tap.2021.3060022 Google Scholar
13. Monti, Alessio, Filiberto Bilotti, and Alessandro Toscano, "Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles," Optics Letters, Vol. 36, No. 23, 4479-4481, 2011.
doi:10.1364/ol.36.004479 Google Scholar
14. Padooru, Yashwanth R., Alexander B. Yakovlev, Pai-Yen Chen, and Andrea Alù, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics, Vol. 112, No. 3, 034907, 2012.
doi:10.1063/1.4745888 Google Scholar
15. Jacobsen, Rasmus E. and Samel Arslanagić, "Extreme localization of fields in open cylindrical impedance surface cavities," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 2, 1686-1693, 2024.
doi:10.1109/tap.2024.3349783 Google Scholar
16. Lin, Chun-Wen and Anthony Grbic, "A realistic coaxial feed for cascaded cylindrical metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 11, 2624-2628, 2023.
doi:10.1109/lawp.2023.3295753 Google Scholar
17. Lin, Chun-Wen and Anthony Grbic, "Analysis and synthesis of cascaded cylindrical metasurfaces using a wave matrix approach," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6546-6559, 2021.
doi:10.1109/tap.2021.3070084 Google Scholar
18. Dugan, Jordan, João G. Nizer Rahmeier, Tom J. Smy, and Shulabh Gupta, "Field scattering analysis of cylindrical spatially dispersive metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 11, 2619-2623, 2023.
doi:10.36227/techrxiv.22350994.v1 Google Scholar
19. Lin, Chun-Wen and Anthony Grbic, "Field synthesis with azimuthally varying, cascaded, cylindrical metasurfaces using a wave matrix approach," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 796-808, 2023.
doi:10.1109/tap.2022.3221626 Google Scholar
20. Sipus, Zvonimir, Marko Bosiljevac, and Anthony Grbic, "Modelling cascaded cylindrical metasurfaces using sheet impedances and a transmission matrix formulation," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1041-1047, 2018.
doi:10.1049/iet-map.2017.0465 Google Scholar
21. Šipuš, Zvonimir, Dominik Barbarić, and Marko Bosiljevac, "Design of cascaded cylindrical metasurfaces using resonance cancellation method," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 2841-2845, 2023.
doi:10.1109/lawp.2023.3300979 Google Scholar
22. Brugnolo, P., S. Arslanagić, and R. E. Jacobsen, "Bound states in the continuum in cylindrical all-dielectric metasurface cavities," Physical Review Letters, Vol. 134, No. 9, 092902, 2025.
doi:10.1103/PhysRevLett.134.096902 Google Scholar
23. Arslanagić, Samel and Richard W. Ziolkowski, "Highly subwavelength, superdirective cylindrical nanoantenna," Physical Review Letters, Vol. 120, No. 23, 237401, 2018.
doi:10.1103/physrevlett.120.237401 Google Scholar
24. Ziolkowski, Richard W., "Using Huygens multipole arrays to realize unidirectional needle-like radiation," Physical Review X, Vol. 7, No. 3, 031017, 2017.
doi:10.1103/physrevx.7.031017 Google Scholar
25. Alaee, R., R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, "A generalized Kerker condition for highly directive nanoantennas," Optics Letters, Vol. 40, No. 11, 2645-2648, 2015.
doi:10.1364/ol.40.002645 Google Scholar
26. Jacobsen, Rasmus E., Andrei V. Lavrinenko, and Samel Arslanagić, "A water-based Huygens dielectric resonator antenna," IEEE Open Journal of Antennas and Propagation, Vol. 1, 493-499, 2020.
doi:10.1109/ojap.2020.3021802 Google Scholar
27. Rahimzadegan, Aso, Dennis Arslan, David Dams, Achim Groner, Xavi Garcia-Santiago, Rasoul Alaee, Ivan Fernandez-Corbaton, Thomas Pertsch, Isabelle Staude, and Carsten Rockstuhl, "Beyond dipolar Huygens' metasurfaces for full-phase coverage and unity transmittance," Nanophotonics, Vol. 9, No. 1, 75-82, 2020.
doi:10.1515/nanoph-2019-0239 Google Scholar
28. Tang, Ming-Chun, Zhentian Wu, Ting Shi, and Richard W. Ziolkowski, "Dual-band, linearly polarized, electrically small Huygens dipole antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 37-47, 2019.
doi:10.1109/tap.2018.2874763 Google Scholar
29. Shcherbinin, Vitalii I., Volodymyr I. Fesenko, Tetiana I. Tkachova, and Vladimir R. Tuz, "Superscattering from subwavelength corrugated cylinders," Physical Review Applied, Vol. 13, No. 2, 024081, 2020.
doi:10.1103/physrevapplied.13.024081 Google Scholar
30. Sievenpiper, D. F., Artificial Impedance Surfaces for Antennas, 737-777, Modern Antenna Handbook, 2007.
doi:10.1002/9780470294154.ch15
31. Simovski, C. R., P. de Maagt, and I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/tap.2004.842598 Google Scholar
32. Luukkonen, Olli, Constantin Simovski, Gérard Granet, George Goussetis, Dmitri Lioubtchenko, Antti V. Raisanen, and Sergei A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/tap.2008.923327 Google Scholar
33. Dragoman, Mircea, Martino Aldrigo, Adrian Dinescu, Daniela Dragoman, and Alessandra Costanzo, "Towards a terahertz direct receiver based on graphene up to 10 THz," Journal of Applied Physics, Vol. 115, No. 4, 044307, 2014.
doi:10.1063/1.4863305 Google Scholar
34. Xiong, Han, Ming-Chun Tang, Yue-Hong Peng, Yuan-Hong Zhong, and Xiao-Heng Tan, "Surface impedance of metasurfaces/graphene hybrid structures," Nanoscale Research Letters, Vol. 14, 1-8, 2019.
doi:10.1186/s11671-019-2995-x Google Scholar
35. Fallahi, Arya and Julien Perruisseau-Carrier, "Design of tunable biperiodic graphene metasurfaces," Physical Review B --- Condensed Matter and Materials Physics, Vol. 86, No. 19, 195408, 2012.
doi:10.1103/physrevb.86.195408 Google Scholar
36. Monti, Alessio, Shiva Hayati Raad, Zahra Atlasbaf, Alessandro Toscano, and Filiberto Bilotti, "Maximizing the forward scattering of dielectric nanoantennas through surface impedance coatings," Optics Letters, Vol. 47, No. 10, 2386-2389, 2022.
doi:10.1364/ol.456958 Google Scholar
37. Monti, A., A. Alù, A. Toscano, and F. Bilotti, "Optical invisibility through metasurfaces made of plasmonic nanoparticles," Journal of Applied Physics, Vol. 117, No. 12, 123103, 2015.
doi:10.1063/1.4916257 Google Scholar
38. Monti, Alessio, Andrea Alù, Alessandro Toscano, and Filiberto Bilotti, "Surface impedance modeling of all-dielectric metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1799-1811, 2020.
doi:10.1109/tap.2019.2951521 Google Scholar
39. Monti, Alessio, Andrea Alù, Alessandro Toscano, and Filiberto Bilotti, "Design of high-Q passband filters implemented through multipolar all-dielectric metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5142-5147, 2021.
doi:10.1109/tap.2020.3045795 Google Scholar
40. Jacobsen, Rasmus E., Andrei V. Lavrinenko, and Samel Arslanagić, "Scattering properties of high-permittivity dielectric resonators embedded with impedance sheets," 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 1-4, Gran Canaria, Spain, 2022.
doi:10.23919/at-ap-rasc54737.2022.9814262
41. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.
doi:10.1088/2040-8986/aa7956
42. Noguez, Cecilia, "Surface plasmons on metal nanoparticles: The influence of shape and physical environment," The Journal of Physical Chemistry C, Vol. 111, No. 10, 3806-3819, 2007.
doi:10.1021/jp066539m Google Scholar
43. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st Ed., John Wiley & Sons, Hoboken, New York, 1983.
doi:10.1002/9783527618156
44. Beneck, Ryan J., Lei Kang, Ronald P. Jenkins, Sawyer D. Campbell, and Douglas H. Werner, "Superscattering of electromagnetic waves from subwavelength dielectric structures," Optics Express, Vol. 32, No. 11, 19410-19423, 2024.
doi:10.1364/oe.519478 Google Scholar
45. Chen, Wan, Bo Lv, Jiahui Fu, Tao Jiang, and Yibing Li, "Mode-based superdirective optimization strategy for multi-layered dielectric cylinder," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 5, 4510-4523, 2024.
doi:10.1109/tap.2024.3375986 Google Scholar