School of Information Science and Engineering
Southeast University
China
Homepage1. Schakel, Adriaan M. J., "Relativistic quantum Hall effect," Physical Review D, Vol. 43, No. 4, 1428, 1991.
doi:10.1103/physrevd.43.1428 Google Scholar
2. Qiu, R.-Z., Su-Peng Kou, Z.-X. Hu, Xin Wan, and Su Yi, "Quantum Hall effects in fast-rotating Fermi gases with anisotropic dipolar interaction," Physical Review A — Atomic, Molecular, and Optical Physics, Vol. 83, No. 6, 063633, 2011.
doi:10.1103/physreva.83.063633 Google Scholar
3. Cage, M. E., R. F. Dziuba, and B. F. Field, "A test of the quantum Hall effect as a resistance standard," IEEE Transactions on Instrumentation Measurement, Vol. 34, No. 2, 301-303, 1985.
doi:10.1109/tim.1985.4315329 Google Scholar
4. Lee, Tae Young, Hyun Cheol Koo, Hyung-Jun Kim, Suk Hee Han, and Joonyeon Chang, "Electrical detection of the spin Hall effects in inas quantum well structure with perpendicular magnetization of [Pd/CoFe] multilayer," IEEE Transactions on Magnetics, Vol. 50, No. 1, 1-4, 2013.
doi:10.1109/tmag.2013.2278175 Google Scholar
5. Kulig, M., P. Kurashvili, C. Jasiukiewicz, M. Inglot, S. Wolski, S. Stagraczyński, T. Masłowski, T. Szczepański, R. Stagraczyński, V. K. Dugaev, and L. Chotorlishvili, "Topological insulator and quantum memory," Physical Review B, Vol. 108, No. 13, 134411, 2023.
doi:10.1103/physrevb.108.134411 Google Scholar
6. Kang, Yuhao, Yiming Huang, and Azriel Z Genack, "Dynamics of transmission in disordered topological insulators," Physical Review A, Vol. 103, No. 3, 033507, 2021.
doi:10.1103/physreva.103.033507 Google Scholar
7. Crosse, J. A., Sebastian Fuchs, and Stefan Yoshi Buhmann, "Electromagnetic Green's function for layered topological insulators," Physical Review A, Vol. 92, No. 6, 063831, 2015.
doi:10.1103/physreva.92.063831 Google Scholar
8. Park, Yungyeong, Yosep Park, Hyeonseok Choi, Subeen Lim, Dongwook Kim, and Yeonghun Lee, "Tight-binding device modeling of 2-D topological insulator field-effect transistors with gate-induced phase transition," IEEE Transactions on Electron Devices, Vol. 71, No. 9, 5739-5743, 2024.
doi:10.1109/ted.2024.3427091 Google Scholar
9. Kosmanis, Theodoros I. and Theodoros D. Tsiboukis, "A systematic and topologically stable conformal finite-difference time-domain algorithm for modeling curved dielectric interfaces in three dimensions," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 839-847, 2003.
doi:10.1109/tmtt.2003.808617 Google Scholar
10. Haldane, F. D. M. and S. Raghu, "Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry," Physical Review Letters, Vol. 100, No. 1, 013904, 2008.
doi:10.1103/physrevlett.100.013904 Google Scholar
11. Wang, Zheng, Y. D. Chong, John D. Joannopoulos, and Marin Soljačić, "Reflection-free one-way edge modes in a gyromagnetic photonic crystal," Physical Review Letters, Vol. 100, No. 1, 013905, 2008.
doi:10.1103/physrevlett.100.013905 Google Scholar
12. Wang, Zheng, Yidong Chong, J. D. Joannopoulos, and Marin Soljačić, "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Vol. 461, No. 7265, 772-775, 2009.
doi:10.1038/nature08293 Google Scholar
13. Zeng, Yongquan, Udvas Chattopadhyay, Bofeng Zhu, Bo Qiang, Jinghao Li, Yuhao Jin, Lianhe Li, Alexander Giles Davies, Edmund Harold Linfield, Baile Zhang, Yidong Chong, and Qi Jie Wang, "Electrically pumped topological laser with valley edge modes," Nature, Vol. 578, No. 7794, 246-250, 2020.
doi:10.1038/s41586-020-1981-x Google Scholar
14. Zhou, Rui, Menglin LN Chen, Xintong Shi, Yan Ren, Zihao Yu, Yu Tian, Y Liu, and Hai Lin, "Protected transverse electric waves in topological dielectric waveguides," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 2, 2058-2063, 2023.
doi:10.1109/tap.2023.3336978 Google Scholar
15. Ma, Qian, Long Chen, Shi Long Qin, Xinxin Gao, Yi Zhang, Shuo Liu, Jian Wei You, and Tie Jun Cui, "Observing deformation-induced backscattering in flexible valley-Hall topological metasurfaces," Advanced Optical Materials, Vol. 13, No. 2, 2402078, 2025.
doi:10.1002/adom.202402078 Google Scholar
16. Ma, Qian, Ze Gu, Xinxin Gao, Long Chen, Shi Long Qin, Qian Wen Wu, Qiang Xiao, Jian Wei You, and Tie Jun Cui, "Intelligent hand-gesture recognition based on programmable topological metasurfaces," Advanced Functional Materials, Vol. 35, No. 1, 2411667, 2025.
doi:10.1002/adfm.202411667 Google Scholar
17. Qin, Shi Long, Jian Wei You, Long Chen, Jian Lin Su, Qian Ma, and Tie Jun Cui, "Phase-transition photonic brick for reconfigurable topological pathways," Advanced Functional Materials, Vol. 34, No. 48, 2408727, 2024.
doi:10.1002/adfm.202408727 Google Scholar
18. Benedetti, Marcello, Erika Lloyd, Stefan Sack, and Mattia Fiorentini, "Parameterized quantum circuits as machine learning models," Quantum Science and Technology, Vol. 4, No. 4, 043001, 2019.
doi:10.1088/2058-9565/ab4eb5 Google Scholar
19. Bharti, Kishor, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms," Reviews of Modern Physics, Vol. 94, No. 1, 015004, 2022.
doi:10.1103/revmodphys.94.015004 Google Scholar
20. Cerezo, Marco, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational quantum algorithms," Nature Reviews Physics, Vol. 3, No. 9, 625-644, 2021.
doi:10.1038/s42254-021-00348-9 Google Scholar
21. Endo, Suguru, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan, "Hybrid quantum-classical algorithms and quantum error mitigation," Journal of The Physical Society of Japan, Vol. 90, No. 3, 032001, 2021.
doi:10.7566/jpsj.90.032001 Google Scholar
22. Du, Yuxuan, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao, "Learnability of quantum neural networks," PRX Quantum, Vol. 2, No. 4, 040337, 2021.
doi:10.1103/prxquantum.2.040337 Google Scholar
23. Huang, Hsin-Yuan, Richard Kueng, and John Preskill, "Information-theoretic bounds on quantum advantage in machine learning," Physical Review Letters, Vol. 126, No. 19, 190505, 2021.
doi:10.1103/physrevlett.126.190505 Google Scholar
24. Colella, Emanuel, Spencer Beloin, Luca Bastianelli, Valter Mariani Primiani, Franco Moglie, and Gabriele Gradoni, "Variational quantum shot-based simulations for waveguide modes," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 4, 2084-2094, 2023.
doi:10.1109/tmtt.2023.3339243 Google Scholar
25. Ewe, Wei-Bin, Dax Enshan Koh, Siong Thye Goh, Hong-Son Chu, and Ching Eng Png, "Variational quantum-based simulation of waveguide modes," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 5, 2517-2525, 2022.
doi:10.1109/tmtt.2022.3151510 Google Scholar
26. Ilin, Yigal and Itai Arad, "Dissipative variational quantum algorithms for gibbs state preparation," IEEE Transactions on Quantum Engineering, Vol. 6, 2025.
doi:10.1109/tqe.2024.3511419 Google Scholar
27. Wurtz, Jonathan and Peter J Love, "Classically optimal variational quantum algorithms," IEEE Transactions on Quantum Engineering, Vol. 2, 1-7, 2021.
doi:10.1109/tqe.2021.3122568 Google Scholar
28. Huang, Rui, Xiaoqing Tan, and Qingshan Xu, "Learning to learn variational quantum algorithm," IEEE Transactions on Neural Networks and Learning Systems, Vol. 34, No. 11, 8430-8440, 2022.
doi:10.1109/tnnls.2022.3151127 Google Scholar
29. Preskill, John, "Quantum computing in the NISQ era and beyond," Quantum, Vol. 2, 79, 2018.
doi:10.22331/q-2018-08-06-79 Google Scholar
30. Zhou, Yifan, Peng Zhang, and Fei Feng, "Noisy-intermediate-scale quantum electromagnetic transients program," IEEE Transactions on Power Systems, Vol. 38, No. 2, 1558-1571, 2022.
doi:10.1109/tpwrs.2022.3172655 Google Scholar
31. Khalid, Uman, Junaid Ur Rehman, Haejoon Jung, Trung Q. Duong, Octavia A. Dobre, and Hyundong Shin, "Quantum property learning for NISQ networks: Universal quantum witness machines," IEEE Transactions on Communications, Vol. 73, No. 4, 2207-2221, 2024.
doi:10.1109/tcomm.2024.3469555 Google Scholar
32. Biamonte, Jacob, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd, "Quantum machine learning," Nature, Vol. 549, No. 7671, 195-202, 2017.
doi:10.1038/nature23474 Google Scholar
33. Harrow, Aram W. and Ashley Montanaro, "Quantum computational supremacy," Nature, Vol. 549, No. 7671, 203-209, 2017.
doi:10.1038/nature23458 Google Scholar
34. Peruzzo, Alberto, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien, "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Vol. 5, No. 1, 4213, Jul. 2014.
doi:10.1038/ncomms5213 Google Scholar
35. Higgott, Oscar, Daochen Wang, and Stephen Brierley, "Variational quantum computation of excited states," Quantum, Vol. 3, 156, Jul. 2019.
doi:10.22331/q-2019-07-01-156 Google Scholar
36. Jones, Tyson, Suguru Endo, Sam McArdle, Xiao Yuan, and Simon C. Benjamin, "Variational quantum algorithms for discovering hamiltonian spectra," Physical Review A, Vol. 99, No. 6, 062304, Jun. 2019.
doi:10.1103/physreva.99.062304 Google Scholar
37. Vogt, Nicolas, Sebastian Zanker, Jan-Michael Reiner, Michael Marthaler, Thomas Eckl, and Anika Marusczyk, "Preparing ground states with a broken symmetry with variational quantum algorithms," Quantum Science and Technology, Vol. 6, No. 3, 035003, 2021.
doi:10.1088/2058-9565/abe568 Google Scholar
38. Li, Ying and Simon C. Benjamin, "Efficient variational quantum simulator incorporating active error minimization," Physical Review X, Vol. 7, No. 2, 021050, 2017.
doi:10.1103/physrevx.7.021050 Google Scholar
39. Mahdian, Mahmoud and H. Davoodi Yeganeh, "Incoherent quantum algorithm dynamics of an open system with near-term devices," Quantum Information Processing, Vol. 19, No. 9, 285, 2020.
doi:10.1007/s11128-020-02800-8 Google Scholar
40. Endo, Suguru, Jinzhao Sun, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational quantum simulation of general processes," Physical Review Letters, Vol. 125, No. 1, 010501, 2020.
doi:10.1103/physrevlett.125.010501 Google Scholar
41. Wang, Xin, Zhixin Song, and Youle Wang, "Variational quantum singular value decomposition," Quantum, Vol. 5, 483, 2021.
doi:10.22331/q-2021-06-29-483 Google Scholar
42. Li, Keren, Shijie Wei, Pan Gao, Feihao Zhang, Zengrong Zhou, Tao Xin, Xiaoting Wang, Patrick Rebentrost, and Guilu Long, "Optimizing a polynomial function on a quantum processor," npj Quantum Information, Vol. 7, No. 1, 16, 2021.
doi:10.1038/s41534-020-00351-5 Google Scholar
43. LaRose, Ryan, Arkin Tikku, Étude O’Neel-Judy, Lukasz Cincio, and Patrick J. Coles, "Variational quantum state diagonalization," npj Quantum Information, Vol. 5, No. 1, 57, 2019.
doi:10.1038/s41534-019-0167-6 Google Scholar
44. Putterman, Harald, Kyungjoo Noh, Connor T. Hann, Gregory S. MacCabe, Shahriar Aghaeimeibodi, Rishi N. Patel, Menyoung Lee, William M. Jones, Hesam Moradinejad, Roberto Rodriguez, et al. "Hardware-efficient quantum error correction via concatenated bosonic qubits," Nature, Vol. 638, No. 8052, 927-934, 2025.
doi:10.1038/s41586-025-08642-7 Google Scholar
45. Elhatisari, Serdar, Lukas Bovermann, Yuan-Zhuo Ma, Evgeny Epelbaum, Dillon Frame, Fabian Hildenbrand, Myungkuk Kim, Youngman Kim, Hermann Krebs, Timo A. Lähde, Dean Lee, Ning Li, Bing-Nan Lu, Ulf-G. Meißner, Gautam Rupak, Shihang Shen, Young-Ho Song, and Gianluca Stellin, "Wavefunction matching for solving quantum many-body problems," Nature, Vol. 630, No. 8015, 59-63, 2024.
doi:10.1038/s41586-024-07422-z Google Scholar
46. Mul, Martyna, Adam Lamecki, Roberto Gómez-García, and Michal Mrozowski, "Inverse nonlinear eigenvalue problem framework for the synthesis of coupled-resonator filters with nonresonant nodes and arbitrary frequency-variant reactive couplings," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 12, 5203-5216, 2021.
doi:10.1109/tmtt.2021.3119288 Google Scholar
47. Liu, Na, Luis Eduardo Tobón, Yanmin Zhao, Yifa Tang, and Qing Huo Liu, "Mixed spectral-element method for 3-D Maxwell's eigenvalue problem," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 317-325, 2015.
doi:10.1109/tmtt.2014.2387839 Google Scholar
48. Wang, Shi Jie, Jie Liu, Ke Chen, and Qing Huo Liu, "A spurious-free domain decomposition method for 3-D Maxwell's eigenvalue problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 2, 548-560, 2023.
doi:10.1109/tmtt.2022.3213535 Google Scholar
49. Ford, Brian and George Hall, "The generalized eigenvalue problem in quantum chemistry," Computer Physics Communications, Vol. 8, No. 5, 337-348, 1974.
doi:10.1016/0010-4655(74)90011-3 Google Scholar
50. Chugunova, Marina and Dmitry Pelinovsky, "Count of eigenvalues in the generalized eigenvalue problem," Journal of Mathematical Physics, Vol. 51, No. 5, 052901, 2010.
doi:10.1063/1.3406252 Google Scholar
51. Arroyo, J. and J. Zapata, "Subspace iteration search method for generalized eigenvalue problems with sparse complex unsymmetric matrices in finite-element analysis of waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 8, 1115-1123, 1998.
doi:10.1109/22.704954 Google Scholar
52. Zhu, Zhaoming and Thomas G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Optics Express, Vol. 10, No. 17, 853-864, 2002.
doi:10.1364/oe.10.000853 Google Scholar
53. Guo, Shangping, Feng Wu, Sacharia Albin, and Robert S. Rogowski, "Photonic band gap analysis using finite-difference frequency-domain method," Optics Express, Vol. 12, No. 8, 1741-1746, 2004.
doi:10.1364/opex.12.001741 Google Scholar
54. Chen, Menglin L. N., Li Jun Jiang, and Wei E. I. Sha, "Generation of orbital angular momentum by a point defect in photonic crystals," Physical Review Applied, Vol. 10, No. 1, 014034, 2018.
doi:10.1103/physrevapplied.10.014034 Google Scholar
55. Fang, Ming, Zhixiang Huang, Wei E. I. Sha, and Xianliang Wu, "Maxwell-hydrodynamic model for simulating nonlinear terahertz generation from plasmonic metasurfaces," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 2, 194-201, 2017.
doi:10.1109/jmmct.2017.2751553 Google Scholar
56. Fedorov, Dmitry A, Bo Peng, Niranjan Govind, and Yuri Alexeev, "VQE method: A short survey and recent developments," Materials Theory, Vol. 6, No. 1, 2, 2022.
doi:10.1186/s41313-021-00032-6 Google Scholar
57. Grimsley, Harper R., Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, "An adaptive variational algorithm for exact molecular simulations on a quantum computer," Nature Communications, Vol. 10, No. 1, 3007, 2019.
doi:10.1038/s41467-019-10988-2 Google Scholar
58. Schillo, Niclas and Andreas Sturm, "Variational quantum algorithms for differential equations on a noisy quantum computer," IEEE Transactions on Quantum Engineering, Vol. 6, 1-16, 2025.
doi:10.1109/tqe.2025.3532017 Google Scholar
59. Jaksch, Dieter, Peyman Givi, Andrew J. Daley, and Thomas Rung, "Variational quantum algorithms for computational fluid dynamics," AIAA Journal, Vol. 61, No. 5, 1885-1894, 2023.
doi:10.2514/1.j062426 Google Scholar
60. Cong, Thanh N. N. and Hiep L. Thi, "Variational quantum algorithms in finance," Proceedings of Ninth International Congress on Information and Communication Technology, 15-25, X. S. Yang, S. Sherratt, N. Dey, A. Joshi, (eds), Springer, Singapore, 2024.
doi:10.1007/978-981-97-3299-9_2
61. Joannopoulos, J. D., Steven G. Johnson, Joshua N. Winn, and Robert D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., 1-286, 2011.
62. Köcher, Nikolas, Hendrik Rose, Sachin S. Bharadwaj, Jörg Schumacher, and Stefan Schumacher, "Numerical solution of nonlinear Schrödinger equation by a hybrid pseudospectral-variational quantum algorithm," Scientific Reports, Vol. 15, No. 1, 23478, 2025.
doi:10.1038/s41598-025-05660-3 Google Scholar
63. Cao, Chenfeng, Filippo Maria Gambetta, Ashley Montanaro, and Raul A. Santos, "Unveiling quantum phase transitions from traps in variational quantum algorithms," npj Quantum Information, Vol. 11, No. 1, 93, 2025.
doi:10.1038/s41534-025-01038-5 Google Scholar
64. Zhang, Xu, Wenjie Jiang, Jinfeng Deng, Ke Wang, Jiachen Chen, Pengfei Zhang, Wenhui Ren, Hang Dong, Shibo Xu, Yu Gao, Feitong Jin, Xuhao Zhu, Qiujiang Guo, Hekang Li, Chao Song, Alexey V. Gorshkov, Thomas Iadecola, Fangli Liu, Zhe-Xuan Gong, Zhen Wang, Dong-Ling Deng, and H. Wang, "Digital quantum simulation of Floquet symmetry-protected topological phases," Nature, Vol. 607, No. 7919, 468-473, 2022.
doi:10.1038/s41586-022-04854-3 Google Scholar
65. Sun, Rong-Yang, Tomonori Shirakawa, and Seiji Yunoki, "Efficient variational quantum circuit structure for correlated topological phases," Physical Review B, Vol. 108, No. 7, 075127, 2023.
doi:10.1103/physrevb.108.075127 Google Scholar
66. Ciaramelletti, Carola, Martin Beseda, Mirko Consiglio, Luca Lepori, Tony J. G. Apollaro, and Simone Paganelli, "Detecting quasidegenerate ground states in topological models via the variational quantum eigensolver," Physical Review A, Vol. 111, No. 2, 022437, 2025.
doi:10.1103/physreva.111.022437 Google Scholar
67. Cersonsky, Rose K., James Antonaglia, Bradley D. Dice, and Sharon C. Glotzer, "The diversity of three-dimensional photonic crystals," Nature Communications, Vol. 12, No. 1, 2543, 2021.
doi:10.1038/s41467-021-22809-6 Google Scholar
68. Rinne, Stephanie A., Florencio García-Santamaría, and Paul V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nature Photonics, Vol. 2, No. 1, 52-56, 2008.
doi:10.1038/nphoton.2007.252 Google Scholar
69. Holewa, Paweł, Daniel A. Vajner, Emilia Zięba-Ostój, Maja Wasiluk, Benedek Gaál, Aurimas Sakanas, Marek G. Mikulicz, Paweł Mrowiński, Bartosz Krajnik, Meng Xiong, Kresten Yvind, Niels Gregersen, Anna Musiał, Alexander Huck, Tobias Heindel, Marcin Syperek, and Elizaveta Semenova, "High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band," Nature Communications, Vol. 15, No. 1, 3358, 2024.
doi:10.1038/s41467-024-47551-7 Google Scholar
70. Crespi, Andrea, Roberta Ramponi, Roberto Osellame, Linda Sansoni, Irene Bongioanni, Fabio Sciarrino, Giuseppe Vallone, and Paolo Mataloni, "Integrated photonic quantum gates for polarization qubits," Nature Communications, Vol. 2, No. 1, 566, 2011.
doi:10.1038/ncomms1570 Google Scholar