Vol. 05
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Numerical Implementations of the Conjugate Gradient Method and the Cg-FFT for Electromagnetic Scattering
By
, Vol. 05, 241-300, 1991
Abstract
Citation
A. F. Peterson S. L. Ray C. H. Chan Raj Mittra , "Numerical Implementations of the Conjugate Gradient Method and the Cg-FFT for Electromagnetic Scattering," , Vol. 05, 241-300, 1991.
doi:10.2528/PIER89103007
http://www.jpier.org/PIER/pier.php?paper=8910307
References

1. Borup, D. T. and O. P. Gandhi, "Fast-Fourier transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies," IEEE Trans. Microwave Theory Tech., No. MTT-32, 355-360, April 1984.

2. Borup, D. T. and O. P. Gandhi, "Calculation of high resolution SAR distribution in biological bodies using the FFT algorithm and conjugate gradient method," IEEE Trans. Microwave Theory Tech., Vol. MTT-33, 417-419, May 1985.

3. Brigham, E. O., The Fast Fourier Transform, Englewood Cliffs, NJ: Prentice-Hall, 1974.

4. Catedra, M. F., J. G. Cuevas, and L. Nuno, "A scheme to analyze conducting plates of resonant size using the conjugate gradient method and the fast Fourier transform," IEEE Trans. Antennas Propagat., Vol. AP-36, 1744-1752, Dec. 1988.

5. Chan, C. H., "A numerically efficient technique for the method of moments solution of electromagnetic problem associated with planar periodic structures," Microwave and Optical Technology Letters, Vol. 1, 372-374, Dec. 1988.

6. Cwik, T. A. and R. Mittra, "Scattering from frequency selective screens," Electromagnetics, Vol. 5, 263-283, 1985.

7. Daniel, S. M. and R. Mittra, "An optimal solution to a scattering problem," Proc. IEEE, Vol. 58, 270-271, 1970.

8. Davidson, D. B. and D. A. McNamara, "Comparison of the application of various conjugate gradient algorithms to electromagnetic radiation from conducting bodies of revolution," Microwave and Optical Technology Letters, Vol. 1, 243-246, Sep. 1988.

9. Evans, D. J., Preconditioning Methods: Analysis and Application, New York: Gordon and Breach, (ed), 1983.

10. Golub, G. H. and C. F. Van Loan, Matrix Computations, Baltimore: The Johns Hopkins University Press, 1983.

11. Harrington, R. F., Field Computation by Moment Methods, Malabar, FL: Krieger, 1982.

12. Hestenes, M. R. and E. Stiefel, "Methods of conjugate gradients for solving linear systems," J. Res. Nat. Bur. Stand., Vol. 49, 409-435, 1952.

13. Jennings, A., "Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method," J. Inst. Math. Appl., Vol. 20, 61-72, 1977.

14. Kas, A. and E. L. Yip, "Preconditioned conjugate gradient methods for solving electromagnetics problems," IEEE Trans. Antennas Propagat., Vol. AP-35, 147-152, Feb. 1987.

15. Kastner, R. and R. Mittra, "A spectral-iteration technique for analyzing scattering from arbitrary bodies, Part I: Cylindrical scatterers with E-wave incidence," IEEE Trans. Antennas Propagat., Vol. AP-31, 499-506, May 1983. (a).

16. Kastner, R. and R. Mittra, "A spectral-iteration technique for analyzing scattering from arbitrary bodies, Part II: Conducting cylinders with H-wave incidence," IEEE Trans. Antennas Propagat., Vol. AP-31, 535-537, May 1983. (b).

17. Kastner, R. and R. Mittra, "new stacked two-dimensional spectral iterative technique for analyzing microwave power deposition in biological media," IEEE Trans. Microwave Theory Tech., Vol. MTT-31, 898-904, Nov. 1983. (c).

18. Ko, W. L. and R. Mittra, "A new approach based upon the combination of integral equation and asymptotic techniques for solving electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. AP-25, 187-197, March 1977.

19. Mittra, R. and C. H. Chan, "Iterative approaches to the solution of electromagnetic boundary value problems," Electromagnetics, Vol. 5, 123-146, 1985.

20. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces --- A review," Proc. IEEE, Vol. 76, 1593-1615, Dec. 1988.

21. Montgomery, J. P. and K. R. Davey, "The solution of planar periodic structures using iterative methods," Electromagnetics, Vol. 5, 209-235, 1985.

22. Nyo, H. L., A. T. Adams, and R. F. Harrington, "The discrete convolution method for electromagnetic problems," Electromagnetics, Vol. 5, 191-208, 1985.

23. Oppenheim, A. V. and R. W. Schafer, Digital Signal Processing, Englewood Cliffs: Prentice-Hall, 1975.

24. Pearson, L. W., "A technique for organizing large moment calculations for use with iterative solution methods," IEEE Trans. Antennas Propagat., Vol. AP-33, 1031-1033, Sept. 1985.

25. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin material plates," IEEE Trans. Antennas Propagat., Vol. AP-36, 518-526, April 1988.

25. Peterson, A. F., "An analysis of the spectral iterative technique for electromagnetic scattering from individual and periodic structures," Electromagnetics, Vol. 6, 255-276, 1986.

27. Peterson, A. F., "Iterative methods: When to use them for computational electromagnetics," Applied Computational Electromagnetics Society (ACES) Newsletter, Vol. 2, 43-52, May 1987.

28. Peterson, A. F., "A comparison of integral, differential and hybrid methods for TE-wave scattering from inhomogeneous dielectric cylinders," Journal of Electromagnetic Waves and Applications, Vol. 3, 87-106, 1989.

29. Peterson, A. F. and R. Mittra, "Method of conjugate gradients for the numerical solution of large body electromagnetic scattering problems," J. Opt. Soc. Amer. A, Vol. 2, 971-977, June 1985.

30. Peterson, A. F. and R. Mittra, "Convergence of the conjugate gradient method when applied to matrix equations representing electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. AP-34, 1447-1454, Dec. 1986.

31. Peterson, A. F. and R. Mittra, "Iterative-based computational methods for electromagnetic scattering from individual or periodic structures," IEEE J. Oceanic Engineering, Vol. OE-12, 458-465, Special Issue on Scattering, April 1987.

32. Peterson, A. F., C. F. Smith, and R. Mittra, "Eigenvalues of the moment method matrix and their effect on the convergence of the conjugate gradient method," IEEE Trans. Antennas Propagat., Vol. AP-36, 1177-1179, August 1988.

33. Pries, D. H., "The Toeplitz matrix: Its occurence in antenna problems and a rapid inversion algorithm," IEEE Trans. Antennas Propagat., Vol. AP-20, 204-206, March 1972.

34. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. AP-30, 409-419, May 1982.

35. Ray, S. L. and A. F. Peterson, "Error and convergence in numerical implementations of the conjugate gradient method," IEEE Trans. Antennas Propagat., Vol. AP-36, 1824-1827, Dec. 1988.

36. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propagat., Vol. AP-13, 334-341, May 1965.

37. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of the fast Fourier transform and the conjugate gradient method for efficient solution of electromagnetic scattering from both electrically large and small conducting bodies," Electromagnetics, Vol. 5, 99-122, 1985.

38. Sarkar, T. K. and S. M. Rao, "An application of the conjugate gradient method for the solution of the electromagnetic scattering from arbitrarily oriented wire antennas," IEEE Trans. Antennas Propagat., Vol. AP-32, 398-403, April 1984.

39. Sarkar, T. K., K. R. Siarkiewicz, and R. F. Stratton, "Survey of numerical methods for solution of large systems of linear equations for electromagnetic field problems," IEEE Trans. Antennas Propagat., Vol. AP-29, 847-856, Nov. 1981.

40. Smith, C. F., A. F. Peterson, and R. Mittra, "A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields," IEEE Trans. Antennas Propagat., Vol. AP-37, 1490-1493, Nov. 1989.

41. Smith, C. F., A. F. Peterson, and R. Mittra, "The biconjugate gradient method for electromagnetic scattering," IEEE Trans. Antennas Propagat., Vol. AP-38, 938-940, June 1990.

42. Stiefel, E. L., "Kernel polynomials in linear algebra and their numerical applications," Nut. Bur. Stand. Appl. Math. Ser., Vol. 49, 1-22, 1958.

43. Su, C. C., "Calculation of electromagnetic scattering from a dielectric cylinder using the conjugate gradient method and FFT," IEEE Trans. Antennas Propagat., Vol. AP-35, 1418-1425, Dec. 1987.

44. Tsao, C. H. and R. Mittra, "A spectral iteration approach for analyzing scattering from frequency selective surfaces," IEEE Trans. Antennas Propagat., Vol. AP-30, 303-308, March 1982.

45. van den Berg, P. M., "Iterative computational techniques in scattering based upon the integrated square error criterion," IEEE Trans. Antennas Propagat., Vol. AP-32, 1063-1071, Oct. 1984.