1. Duchene, B., D. Lesselier, and W. Tabbara, "Acoustical imaging of 2-D fluid targets buried in half-space: a diffraction tomography approach," IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. UFFC-34, No. 5, 540-549, 1987.
doi:10.1109/T-UFFC.1987.26980 Google Scholar
2. Duchene, B., D. Lesselier, and W. Tabbara, "Acoustical imaging of 2-D fluid targets buried in half-space: a diffraction tomography approach using line sources insonification," Electromagnetic and Acoustic Scattering Detection and Inverse Problems, C. Bourrely et al. Eds., World Scientific Publ. Co., London, 1989. Google Scholar
3. Osumi, N. and K. Ueno, "Microwave holographic imaging of underground objects," IEEE Trans. Atennas Propagat., Vol. AP-33, No. 2, 152-159, 1985.
doi:10.1109/TAP.1985.1143559 Google Scholar
4. Chommeloux, L., Ch. Pichot, and J. Ch. Bolomey, "Electromagnetic modeling for microwave imaging of cylindrical buried inhomogeneities," IEEE Trans. Microwave Theory Tech., Vol. MTT-34, No. 10, 1064-1076, 1986.
doi:10.1109/TMTT.1986.1133496 Google Scholar
5. Michiguchi, Y., et al. "Development of signal processing methods for imaging buried pipes," IEEE Trans. Geosci. Remote Sens., Vol. GE-25, No. 1, 11-15, 1987.
doi:10.1109/TGRS.1987.289775 Google Scholar
6. Azimi, M. and K. C. Kak, "Distorsion in diffraction tomography caused by multiple scattering," IEEE Trans. Med. Imaging, Vol. MI-2, No. 4, 176-195, 1983.
doi:10.1109/TMI.1983.4307637 Google Scholar
7. Lesselier, D., D. Vuillet-Laurent, F. Jouvie, and W. Tabbara, "Iterative solution of some direct and inverse problems in electromagnetic and acoustics," Electromagnetics, Vol. 5, No. 2-3, 147-189, 1985.
doi:10.1080/02726348508908145 Google Scholar
8. Harrington, R. F., "The method of moments in electromagnetics," J. Electromag. Waves Appl., Vol. 1, No. 3, 181-200, 1987.
doi:10.1163/156939387X00018 Google Scholar
9. Miller, E. K., "A selective survey of computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. AP-36, No. 9, 1281-1305, 1988.
doi:10.1109/8.8607 Google Scholar
9. Duchene, B. and W. Tabbara, "Characterization of a buried cylindrical object from its scattered field," IEEE Trans. Son. Ultmson., Vol. SU-31, No. 6, 658-663, 1984.
doi:10.1109/T-SU.1984.31552 Google Scholar
11. Izadian, J., L. Peters, and J. H. Richmond, "Computation of scattering from penetrable cylinders with improved numerical efficiency," IEEE Trans. Geosci. Remote Sens., Vol. GE-22, No. 1, 52-61, 1984.
doi:10.1109/TGRS.1984.350579 Google Scholar
12. Datta, S. K. and N. El-Akily, "Diffraction of elastic waves by cylindrical cavity in a half-space," J. Acoust. Soc. Am., Vol. 64, No. 6, 1692-1699, 1978.
doi:10.1121/1.382147 Google Scholar
13. Karlsson, A., "Scattering from inhomogeneities in layered structures," J. Acoust. Soc. Am., Vol. 71, No. 5, 1083-1092, 1982.
doi:10.1121/1.387779 Google Scholar
14. Bennett, C. L. and H. Mieras, "Space-time integral equation solution for hard and soft targets in presence of a hard and soft half-space," Wave Mot., Vol. 5, 399-411, 1983.
doi:10.1016/0165-2125(83)90025-2 Google Scholar
15. Niwa, Y., S. Kirose, and M. Kitahara, "Application of the boundary integral equation (B.I.E.) method to transient response analysis of inclusions in a half-space," Wave Mot., Vol. 8, No. 1, 77-91, 1986.
doi:10.1016/0165-2125(86)90007-7 Google Scholar
16. Schuster, G. T. and L. C. Smith, "Modeling scatterers embedded in plane-layered media by an hybrid Haskell-Thomson and boundary integral equation method," J. Acoust. Soc. Am., Vol. 78, No. 4, 1387-1394, 1985.
doi:10.1121/1.392910 Google Scholar
17. Umashankar, K. R., "Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques," Wave Mot., Vol. 10, No. 6, 493-525, 1988.
doi:10.1016/0165-2125(88)90010-8 Google Scholar
18. Hestenes, M. and E. Stiefel, "Method of conjugate gradients for solving linear systems," J. Res. Nut. Bur. Stand., Vol. 49, No. 152, 409-436, 1952.
doi:10.6028/jres.049.044 Google Scholar
19. Ray, S. L. and A. F. Peterson, "Error and convergence in numerical implementations of the conjugate gradient method," IEEE Trans. Antennas Propagat., Vol. AP-36, No. 12, 1824-1827, 12, 1988.
doi:10.1109/8.14405 Google Scholar
20. Tijhuis, A. G., Electromagnetic Inverse Profiling. Theory and Numerical Implementation, VNU Science Press, Utrecht, 1987.
21. Roger, A., "Theoretical study and numerical resolution of inverse problems via the functional derivatives," Inverse Methods in Electromagnetic Imaging, Boerner W. M. et al. Eds., Reidel Publ. Comp., Dordrecht, Part I, 111-120, 1985. Google Scholar
22. Daniel, J. W., "The conjugate-gradient method for linear and nonlinear operator equation," SIAM J. Num. Anal., Vol. 4, No. 1, 10-26, 1967.
doi:10.1137/0704002 Google Scholar
23. Bolomey, J. Ch. and W. Tabbara, "Numerical aspects on coupling between complementary boundary value problems," IEEE Trans. Antennas Propagat., Vol. AP-21, No. 3, 356-363, 1973.
doi:10.1109/TAP.1973.1140500 Google Scholar
24. Sarkar, T. K., K. R. Siarkiewicz, and R. F. Stratton, "Survey of numerical methods for solution of large system of linear equations for electromagnetic field problems," IEEE Trans. Antennas Propagat, Vol. AP-29, No. 6, 847-856, 1981.
doi:10.1109/TAP.1981.1142695 Google Scholar
25. Herman, G. C. and P. M. van den Berg, "A least-square iterative technique for solving time-domain scattering problems," J. Acoust. Soc. Am., Vol. 72, No. 12, 1947-1953, 1982.
doi:10.1121/1.388625 Google Scholar
26. van den Berg, P. M., A. T. de Hoop, A. Segal, and N. Praagman, "The computational model of the electromagnetic heating of biological tissue with application to hyperthermia cancer therapy," IEEE Trans. Biomed. Eng., Vol. BME-30, No. 12, 797-815, 1983.
doi:10.1109/TBME.1983.325081 Google Scholar
27. Dudley, D. G., "Error minimization and convergence in numerical methods," Electromagnetics, Vol. 5, No. 2-3, 89-97, 1985.
doi:10.1080/02726348508908142 Google Scholar
28. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of the Fast Fourier Transform and the conjugate gradient method for efficient solution of electromagnetic scattering from both electrically large and small conducting bodies," Electromagnetics, Vol. 5, No. 2-3, 99-122, 1985.
doi:10.1080/02726348508908143 Google Scholar
29. Mittra, R. and C. H. Chan, "Iterative approaches to the solution of electromagnetic boundary value problems," Electromagnetics, Vol. 5, No. 2-3, 123-146, 1985.
doi:10.1080/02726348508908144 Google Scholar
30. van den Berg, P. M., "Iterative schemes based on the minimization of the error in field problems," Electromagnetics, Vol. 5, No. 2-3, 237-262, 1985.
doi:10.1080/02726348508908148 Google Scholar
31. Peterson, A. F. and R. Mittra, "Method of conjugate gradient for the numerical solution of large-body electromagnetic scattering problem," J. Opt. Soc. Am. A, Vol. 2, No. 6, 971-977, 1985.
doi:10.1364/JOSAA.2.000971 Google Scholar
32. Borup, D. T. and O. P. Gandhi, "Fast-Fourier Transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 4, 255-360, 1984.
doi:10.1109/TMTT.1984.1132683 Google Scholar
33. Sarkar, T. K., X. Yang, and E. Arvas, "A limited survey of various conjugate gradient methods for solving complex matrix equations arising in electromagnetic wave interactions," Wave Mot., Vol. 10, No. 6, 527-546, 1988.
doi:10.1016/0165-2125(88)90011-X Google Scholar
34. Sarkar, T. K., "On the application of the generalized biconjugate algorithm," J. Electrom. Waves Appl., Vol. 1, No. 3, 223-242, 1987.
doi:10.1163/156939387X00036 Google Scholar
35. Peterson, A. F. and R. Mittra, "Convergence of the conjugate gradient method when applied to matrix equations representing electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. AP-34, No. 12, 1447-1454, 1986.
doi:10.1109/TAP.1986.1143780 Google Scholar
36. Peterson, A. F., C. F. Smith, and R. Mittra, "Eigenvalues of the moment method matrix and their effect on the convergence of the conjugate gradient algorithm," IEEE Trans. Antennas Propagat., Vol. AP-36, No. 8, 1177-1179, 1988.
doi:10.1109/8.7236 Google Scholar
37. Kas, A. and E. L. Yip, "Preconditioned conjugate gradient methods for solving electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 2, 147-152, 1987.
doi:10.1109/TAP.1987.1144065 Google Scholar
38. Su, C-C., "Calculation of electromagnetic scattering from a dielectric cylinder using the conjugate gradient method and FFT," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 12, 1418-1425, 1987. Google Scholar
39. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross-section shape," IEEE Trans. Antennas Propagat.,, Vol. AP-13, No. 3, 334-341, 1965.
doi:10.1109/TAP.1965.1138427 Google Scholar
40. Richmond, J. H., "TE-wave scattering by a dielectric cylinder of arbitrary cross-section shape," IEEE Trans. Antennas Propagat., Vol. AP-14, No. 4, 460-464, 1966.
doi:10.1109/TAP.1966.1138730 Google Scholar
41. Joachimovicz, N. and Ch. Pichot, "Comparison of three integral formulations for the 2D-TE scattering problem," IEEE Trans. Microwave Theory Tech., Vol. MTT-38, No. 2, 178-185, 1990.
doi:10.1109/22.46428 Google Scholar
42. Dahlquist, G. and A. Bjorck, Numerical Methods, translated by N. Anderson, Prentice Hall Inc., Englewood Cliffs, N.J., 1974.
43. Brigharn, E. O., The Fast Fourier Transform, Prentice Hall Inc., Englewood Cliffs, N.J., 1974.