1. Mu, T. C., H. Ogawa, and T. Itoh, "Characteristics of multiconductor, asymmetric, slow-wave microstrip transmission lines," IEEE Trans. Microwave Theory Tech., Vol. MTT-34, 1471-1477, 1986. Google Scholar
2. Das, N. K. and D. M. Pozar, "A generalized spectral-domain Green's function for multilayer dielectric substrates with applications to multilayer transmission lines," IEEE Trans. Microwave Theory Tech., Vol. MTT-35, 326-335, 1987.
doi:10.1109/TMTT.1987.1133646 Google Scholar
3. Alexopulos, N. G., "Integrated-circuit structures on anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. MTT-33, 847-881, 1985.
doi:10.1109/TMTT.1985.1133145 Google Scholar
4. Hansen, R. C., "Antenna application of superconductors," IEEE Trans. Microwave Theory Tech., Vol. MTT-39, 1508-1512, 1991.
doi:10.1109/22.83825 Google Scholar
5. Mosig, J. R., "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Ant. Pro., Vol. AP-36, 314-323, 1988. Google Scholar
6. Koul, S. K. and B. Bhat, "Inverted microstrip and suspended microstrip with anisotropic substrates," Proc. IEEE, Vol. 70, 1230-1231, 1982.
doi:10.1109/PROC.1982.12450 Google Scholar
7. Krowne, C. M., "Fourietrr ansformed matrix method of finding propagation characteristics of complex anisotropic layered media," IEEE Trans. Microwave Theory Tech., Vol. MTT-32, 1617-1625, 1984.
doi:10.1109/TMTT.1984.1132901 Google Scholar
8. Tsalarnengas, S. C. and N. K. Uzunoglu, "Radiation from a dipole in the proximity of a general anisotropic grounded layer," IEEE Trans. Ant. Pro., Vol. AP-33, 165-172, 1985.
doi:10.1109/TAP.1985.1143564 Google Scholar
9. Mesa, L. M., R. Marqués, and M. Horno, "A general algorithm for computing the bidimensional spectral Green's dyad in multilayered complex bianisotropic media: the equivalent boundary method," IEEE Trans. Microwave Theory Tech., Vol. MTT-39, 1640-1649, 1991.
doi:10.1109/22.83841 Google Scholar
10. Cano, G., F. Medina, and M. Horno, "Efficient spectral domain analysis of generalized multistrip lines in stratified media including thin, anisotropic, and lossy substrates," IEEE Trans. Microwave Theory Tech., Vol. MTT-40, 217-227, 1992.
doi:10.1109/22.120093 Google Scholar
11. Engheta, N. and M. M. I. Saadoun, "Novel pseudo chiral or Ω medium and its applications," Proceedings of PIERS 1991, Cambridge, Massachusetts, USA, 339, 1991. Google Scholar
12. Saadoun, M. M. I. and N. Engheta, "Novel designs for reciprocal phase shifters using pseudochiral Ω-medium," Proceedings of URSI Symposium 1991, London, Ontario, 337, 1991. Google Scholar
13. Saadoun, M. M. I. and N. Engheta, "A reciprocal phase shifter using pseudochiral or Ω-medium," Microwave Optical Technology Lett., Vol. 5, No. 4, 184-188, 1992.
doi:10.1002/mop.4650050412 Google Scholar
14. Saadoun, M. M. I. and N. Engheta, "The pseudochiral Ω-medium: what is it? and what can be used for?," Proceedings of IEEE AP-S Intl Symposium, Vol. 4, 2038-2041, Chicago, 1992. Google Scholar
15. Mariotte, F., A. Fourrier-Lamer, and S. Zouhdi, "Absorbing polarisator shield having planar chiral patterns,", Patent Number 526269, Date of Patent 28.06.1991. Google Scholar
16. Kong, J. A., "Theorems of bianisotropic media," Proc. IEEE, Vol. 60, 1036-1046, 1972.
doi:10.1109/PROC.1972.8851 Google Scholar
17. Post, E. J., Formal Structure of Electromagnetics, North-Holland, Amsterdam, 1962.
18. Vegni, L., R. Cicchetti, and Capece, "Spectral dyadic Green's function formulation for planar integrated structures," IEEE Trans. Ant. Pro., Vol. AP-36, 1057-1065, 1988.
doi:10.1109/8.7217 Google Scholar
19. Toscano, A. and L. Vegni, "Spectral dyadic Green's function formulation for planar integrated structures with a grounded chiral slab," J. Electr. Waves Applic., Vol. 6, 751-769, 1992.
doi:10.1163/156939392X01426 Google Scholar
20. Toscano, A. and L. Vegni, "Spectral electromagnetic modeling of a planar integrated structure with general grounded anisotropic slab," IEEE Trans. Ant. Pro., Vol. AP-41, 362-370, 1993.
doi:10.1109/8.233123 Google Scholar