1. Saad, S. M., "Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 33, 894-899, Oct. 1985.
doi:10.1109/TMTT.1985.1133147 Google Scholar
2. Rahman, B. M. A., F. A. Fernandez, and J. B. Davies, "Review of finite element methods for microwave and optical waveguides," P. IEEE, Vol. 79, 1442-1448, 1991.
doi:10.1109/5.104219 Google Scholar
3. Harrington, R. F., "Field Computation by Moment Methods," R. E. Krieger Publishing Company, 1968. Google Scholar
4. Hayata, K., M. Koshiba, and N. Suzuki, "Lateral mode analysis of buried heterostructure diode lasers by the finite-element method," IEEE J. Quantum Electmn., Vol. 22, 781-788, June 1986.
doi:10.1109/JQE.1986.1073060 Google Scholar
5. Koshiba, M., K. Hayata, and M. Suzuk, "Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor," IEEE Trans. Microwave Theory Tech., Vol. 32, 587-593, June 1984.
doi:10.1109/TMTT.1984.1132733 Google Scholar
6. Chiang, K. S., "Finite-element analysis of optical fibres with iterative treatment of the infinite 2-D space," Opt. Quantum Electron., Vol. 17, No. 6, 381-391, 1985.
doi:10.1007/BF00619564 Google Scholar
7. Wu, R. B. and C. H. Chen, "A scalar variational conformal map ping technique for weakly guiding dielectric waveguides," IEEE J. Quantum Electron., Vol. 22, 603-609, May 1986. Google Scholar
8. Koshiba, M., K. Hayata, and M. Suzuki, "Approximate scalar finite-element analysis of anisotropic optical waveguides," Electron. Lett., Vol. 18, 411-413, May 1982.
doi:10.1049/el:19820282 Google Scholar
9. Mustacich, R. V., "Scalar finite element analysis of electro-optic modulation in diffused channel waveguides and poled waveguides in polymer thin films," Appl. Opt., Vol. 27, 3732-3737, Sept. 1988.
doi:10.1364/AO.27.003732 Google Scholar
10. Mabaya, N., P. E. Lagasse, and P. Vandenbulcke, "Finite element analysis of optical waveguides," IEEE Trans. Microwave Theory Tech., Vol. 29, 600-605, June 1981.
doi:10.1109/TMTT.1981.1130400 Google Scholar
11. Strake, E., G. P. Bava, and I. Montrosset, "Guided modes of Ti:LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Technol., Vol. 6, 1126-1135, 1988.
doi:10.1109/50.4105 Google Scholar
12. Zienkiewicz, O. C., The Finite Element Method, 3rd Ed., McGraw-Hill, 1977.
13. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineers, 2nd Ed., Cambridge Press, 1990.
14. Davies, J. B., "The finite element method," Numerical Techniques for Microwave and Millimeter-wave Passive Structures, 33-132, T. Itoh ed., Wiley, 1989. Google Scholar
15. Reddy, J. N., An Introduction to the Finite Element Method, Mc-Graw Hill, 1984.
16. Daly, P., "Finite element approach to propagation in elliptical and parabolic waveguides," Int. J. Num. Meth. Eng., Vol. 20, 681-688, 1984.
doi:10.1002/nme.1620200407 Google Scholar
17. Welt, D. and J. Webb, "Finite-element analysis of dielectric waveguides with curved boundaries," IEEE Trans. Microwave Theory Tech., Vol. 33, 576-585, July 1985. Google Scholar
18. Yeh, C., S. B. Dong, and W. Oliver, "Arbitrarily shaped inhomogeneous optical fiber or integrated optical waveguides," J. Appl. Phys., Vol. 46, 2125-2129, May 1975.
doi:10.1063/1.321851 Google Scholar
19. Bird, T. S., "Propagation and radiation characteristics of rib waveguide," Electron. Lett., Vol. 13, 401-403, July 1977. Google Scholar
20. Okamoto, K. and T. Okoshi, "Vectorial wave analysis of inhome geneous optical fibres using finite element method," IEEE Trans. Microwave Theory Tech., Vol. 26, 109-114, 1978.
doi:10.1109/TMTT.1978.1129322 Google Scholar
21. Yeh, C., K. Ha, S. B. Dong, and W. P. Brown, "Single-mode optical waveguides," Appl. Opt., Vol. 18, 1490-1504, May 1979.
doi:10.1364/AO.18.001490 Google Scholar
22. Ikeuchi, M., H. Sawami, and H. Niki, "Analysis of open-type dielectric waveguides by the finite-element iterative method," IEEE Trans. Microwave Theory Tech., Vol. 29, 234-239, Mar. 1981.
doi:10.1109/TMTT.1981.1130333 Google Scholar
23. Oyamada, K. and T. Okoshi, "Two-dimensional finite-element calculation of propagation characteristics of axially nonsymmetrical optical fibres," Radio Sci., Vol. 17, 109-116, Jan.-Feb. 1982. Google Scholar
24. Vandenbulcke, P. and P. E. Lagasse, "Eigenmode analysis of anisotropic optical fibres or integrated optical waveguides," Electron. Lett., Vol. 12, 120-122, Mar. 1976.
doi:10.1049/el:19760095 Google Scholar
25. Berk, A. D., "Variational principles for electromagnetic resonators and waveguides," IRE Trans. Antennas Propagat., Vol. 4, 104-111, Apr. 1956.
doi:10.1109/TAP.1956.1144365 Google Scholar
26. Morishita, K. and N. Kurnagai, "Unified approach to the derivation of variational expression for electromagnetic fields," IEEE Trans. Microwave Theory Tech., Vol. 25, 34-40, Jan. 1977.
doi:10.1109/TMTT.1977.1129027 Google Scholar
27. Chen, C. H. and C. Lien, "The variational principle for nonself-adjoint electromagnetic problems," IEEE Trans. Microwave Theory Tech., Vol. 28, 878-886, Aug. 1980.
doi:10.1109/TMTT.1980.1130186 Google Scholar
28. English, W. J. and F. J. Young, "An E vector variational formulation of the Maxwell equations for cylindrical waveguide problems," IEEE Trans. Microwave Theory Tech., Vol. 19, 40-46, Jan. 1971.
doi:10.1109/TMTT.1971.1127443 Google Scholar
29. Katz, J., "Novel solution of 2-D waveguides using the finite element method," Appl. Opt., Vol. 21, 2747-2750, Aug. 1982.
doi:10.1364/AO.21.002747 Google Scholar
30. Koshiba, M., K. Hayata, and M. Suzuki, "Vector E-field finite-element analysis of dielectric optical waveguides," Applied Optics, Vol. 25 , 10-11, 1986.
doi:10.1364/AO.25.000010 Google Scholar
31. Koshiba, M., K. Hayata, and M. Suzuki, "Finite-element formulation in terms of the electric-field vector for electromagnetic waveguide problems," IEEE Truns. Microwave Theory Tech., Vol. 33, 900-905, Oct. 1985. Google Scholar
32. Hara, M., T. Wada, T. Fukasawa, and F. Kikuchi, "A three dimensional analysis of RF electromagnetic fields by the finite element method," IEEE Trans. Magnetics, Vol. 19, 2417-2420, Nov. 1983.
doi:10.1109/TMAG.1983.1062816 Google Scholar
33. Rahrnan, B. M. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Trans. Microwave Theory Tech., Vol. 32, 20-28, Jan. 1984. Google Scholar
34. Rahman, B. M. A. and J. B. Davies, "Penalty function improvement of waveguide solution by finite elements," IEEE Trans. Microwave Theory Tech., Vol. 32, 922-928, Aug. 1984.
doi:10.1109/TMTT.1984.1132789 Google Scholar
35. Rahman, B. M. A. and J. B. Davies, "Finite-element solution of integrated optical waveguides," J. Lightwave Technol., Vol. 2, 682-688, Oct. 1984. Google Scholar
36. Konrad, A., "Vector variational formulation of electromagnetic fields in anisotropic media," IEEE Trans. Microwave Theory Tech., Vol. 24, 553-559, Sept. 1976.
doi:10.1109/TMTT.1976.1128908 Google Scholar
37. Koshiba, M., K. Hayata, and M. Suzuki, "Improved finite-element formulation in terms of the magnetic field vector for dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 33, 227-233, Mar. 1985.
doi:10.1109/TMTT.1985.1132985 Google Scholar
38. Rahman, B. M. A. and J. B. Davies, "Vector-H finite element solution of GaAs/GaAlAs rib waveguides," IEE Proc. Pt. J, Optoelectron., Vol. 132, 349-353, Dec. 1985.
doi:10.1049/ip-j.1985.0066 Google Scholar
39. Koshiba, M., K. Hayata, and M. Suzuki, "Finite-element solution of anisotropic waveguides with arbitrary tensor permittivity," J. Lightwave Technol., Vol. 4, 121-126, Feb. 1986.
doi:10.1109/JLT.1986.1074687 Google Scholar
40. Hayata, K., M. Eguchi, M. Koshiba, and M. Suzuki, "Vectorial wave analysis of side-tunnel type polarization-maintaining optical fibers by variational finite elements," J. Lightwave Technol., Vol. 4, 1090-1096, Aug. 1986.
doi:10.1109/JLT.1986.1074883 Google Scholar
41. Young, T. P., "Design of integrated optical circuits using finite elements," IEE Proc. Pt. A, Vol. 135, 135-144, Mar. 1988. Google Scholar
42. Kobelansky, A. J. and J. P. Webb, "Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields," Electron. Lett., Vol. 22, 569-570, May 1986.
doi:10.1049/el:19860387 Google Scholar
43. McDougall, M. J. and J. P. Webb, "Infinite elements for the analysis of open dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 37, 1724-1731, Nov. 1989. Google Scholar
44. Su, C.-C., "A combined method for dielectric waveguides using the finite-element technique and the surface integral equations method," IEEE Trans . Microwave Theory Tech., Vol. 34, 1140-1146, Nov. 1986. Google Scholar
45. Hayata, K., M. Koshiba, M. Eguchi, and M. Suzuki, "Vectorial finite-element method without any spurious solutions for dielectric waveguiding problems using transverse magnetic-field component," IEEE Trans. Microwave Theory Tech., Vol. 34, 1120-1124, Nov. 1986. Google Scholar
46. Hayata, K., K. Miura, and M. Koshiba, "Finite-element formulation for lossy waveguides," IEEE Trans. Microwave Theory Tech., Vol. 36, 268-276, Feb. 1988. Google Scholar
47. Chew, W. C. and M. A. Nasir, "A variational analysis of anisotropic, inhomogeneous dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 37, 661-668, Apr. 1989. Google Scholar
48. Cvetkovic, S. R., F. A. Fernandez, and J. B. Davies, "Finite element analysis of wave propagation in lossy inhomogeneous anise tropic dielectric media based on variational principles," 1988 IEEE AP-S Int. Antenna Propagat. Symp. Dig., 1130-1133, Syracuse, New York, June 1988. Google Scholar
49. Fernandez, F. A. and Y. Lu, "Variational finite element analysis of dielectric waveguides with no spurious solutions," Electron. Lett., Vol. 26, 2125-2126, Dec. 1990. Google Scholar
50. Ohtaka, M., M. Matsuhara, and N. Kumagai, "Analysis of the guided modes in slab-coupled waveguides using a variational method," IEEE J. Quantum Electron., Vol. 12, 378-382, July 1976. Google Scholar
51. Williams, C. G. and G. K. Cambrell, "Numerical solution of surface waveguide modes using transverse field components," IEEE Trans. Microwave Theory Tech., Vol. 22, 329-330, Mar. 1974. Google Scholar
52. English, W. J., "Vector variational solutions of inhomogeneously loaded cylindrical waveguide structures," IEEE Trans. Microwave Theory Tech., Vol. 19, 9-18, Jan. 1971. Google Scholar
53. Svedin, J. A. M., "A numerically efficient finite-element formulation for the general waveguide problem without spurious modes," IEEE Trans. Microwave Theory Tech., Vol. 37, 1708-1715, Nov. 1989. Google Scholar
54. Davies, J. B., F. A. Fernandez, and G. Y. Philippou, "Finite element analysis of all modes in cavities with circular symmetry," IEEE Trans. Microwave Theory Tech., Vol. 30, 1975-1980, Nov. 1982. Google Scholar
55. Bathe, K. J. and E. L. Wilson, Numerical Methods in Finite Element Analysis, Englewood Cliffs, 1976.
56. Hayata, K., M. Koshiba, and M. Suzuki, "Vectorial wave analysis of stress --- applied polarization --- maintaining optical fibers by the finite-element method," J. Lightwave Technol., Vol. 4, 133-139, 1986. Google Scholar
57. Bava, G. P., I. Montrosset, W. Sohler, and H. Suche, "Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators," IEEE J. Quantum Electron。, Vol. 23, 42-51, 1987. Google Scholar
58. Rahman, B. M. A. and J. B. Davies, "Finite element solution of nonlinear bistable optical waveguides," Int. J. Optoelectronics, Vol. 4, 153-161, Mar. 1989. Google Scholar
59. Hayata, K. and M. Koshiba, "Full vectorial analysis of nonlinear-optical waveguides," J. Opt. Soc. Am. B, Vol. 5, 2494-2501, Dec. 1988. Google Scholar
60. Ettinger, R. D., F. A. Fernandez, B. M. A. Rahman, and J. B. Davies, "Vector finite element solution of saturable nonlinear striploaded optical waveguides," IEEE Photonic Technology Letters, Vol. 2, 147-149, 1991. Google Scholar
61. Young, T. P., "Finite element modeling of a polarization independent optical amplifier," J. Lightwave Technol., Vol. 10, 626-632, 1992. Google Scholar
62. Lee, J.-F., D.-K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microwave Theory Tech., Vol. 39, 1262-1271, 1991. Google Scholar
63. Hayata, K., M. Eguchi, and M. Koshiba, "Self-consistent finite-/infinite element scheme for unbounded guided wave problems," IEEE Trans. Microwave Theory Tech., Vol. 36, 614-616, Mar. 1988. Google Scholar
64. Koshiba, M., K. Hayata, and M. Suzuki, "Finite-element method analysis of microwave and optical waveguides --- Trends in counter-measures to spurious solutions," Electron. and Comm. in Japan, Vol. 70, Pt. 2, 96-108, 1987. Google Scholar