1. Fleck, Jr., J. A., J. R. Morris, and M. D. Feit, "Time-dependent propagation of high energy laser beams through the atmosphere," Appl. Phys., Vol. 10, 129-160, 1976.
doi:10.1007/BF00896333
2. Feit, M. D., J. A. Fleck, and Jr., "Light propagation in graded-index optical fibers," Appl. Opt., Vol. 17, 3990-3998, 1978.
doi:10.1364/AO.17.003990
3. Feit, M. D. , J. A. Fleck, and Jr., "Calculation of dispersion in graded-index multimode fibers by a propagating beam method," Appl. Opt., Vol. 18, 2843-2851, 1979.
doi:10.1364/AO.18.002843
4. Feit, M. D., J. A. Fleck, and Jr., "Computation of mode properties in optical fiber waveguides by a propagating beam method," Appl. Opt., Vol. 19, 1154-1166, 1980.
doi:10.1364/AO.19.001154
5. Feit, M. D., J. A. Fleck, and Jr., "Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method," Appl. Opt., Vol. 19, 2240-2246, 1980.
doi:10.1364/AO.19.002240
6. Feit, M. D., J. A. Fleck, and Jr., "Mode properties of optical fibers with lossy components by the propagating beam method," Appl. Opt., Vol. 20, 848-856, 1981.
doi:10.1364/AO.20.000848
7. Feit, M. D., J. A. Fleck, and Jr., "Analysis of rib waveguides and couplers by the propagating beam method," J. Opt. Soc. Am. A, Vol. 7, 73-79, 1990.
doi:10.1364/JOSAA.7.000073
8. Sharma, A. and S. Banerjee, "Method for propagation of total fields or beams through optical waveguides," Opt. Lett., Vol. 14, 94-96, 1989.
doi:10.1364/OL.14.000096
9. Banerjee, S. and A. Sharma, "Propagation characteristics of optical waveguiding structures by direct solution of the Helmholtz equation for total fields," J. Opt. Soc. Am. A, Vol. 6, 1884-1894, 1989; Errata: Vol. 7, 2156, 1990.
doi:10.1364/JOSAA.6.001884
10. Sharma, A. and A. Taneja, "Unconditionally stable formulation of the collocation method," Integrated Photonics Research Meeting of the Optical Society of America, Paper # W 4, Monterey (Califofia, USA), April 9-11, 1991.
11. Sharma, A. and A. Taneja, "Unconditionally stable procedure to propagate beams through optical waveguides using the collocation method," Opt. Lett., Vol. 16, 1162-1164, 1991.
doi:10.1364/OL.16.001162
12. Sharma, A. and A. Taneja, "Variable-transformed collocation method for field propagat ion through waveguiding structures," Opt. Lett., Vol. 17, 804-806, 1992.
doi:10.1364/OL.17.000804
13. Sharma, A. and A. Taneja, "Collocation method for field propagation through optical waveguides: A simple variable transformation to improve accuracy," Proc. International Conference from Galileo's "Occhialino" to Optoelectronics, 916-921, (Ed. P. Mazzoldi), Singapore World Scientific, 1993.
14. Taneja, A. and A. Sharma, "Propagation of beams through optical waveguiding structures: Comparison of the beam propagation method (BPM) and the collocation method," J. Opt. Soc. Am. A, Vol. 10, 1739-1745, 1993.
doi:10.1364/JOSAA.10.001739
15. Sharma, A. and S. Banerjee, "A numerical method for solving the generalized equation for nonlinear pulse propagation through optical fibers," Proc. Conference on Emerging Optoelectronic Technologies, 366-369, New Delhi Tata McGraw-Hill, 1992.
16. Deb, S. and A. Sharma, "Nonlinear pulse propagation through optical fibers: An efficient numerical method," Opt. Eng., Vol. 32, 695-699, 1993; Errata: Vol. 32, 2986, 1993.
doi:10.1117/12.61283
17. Deb, S., A. Taneja, and A. Sharma, "Wave propagation through a randomly perturbed waveguide using the collocation method,", (to be published).
doi:10.1117/12.61283
18. Frazer, R. A., W. P. Jones, and S. W. Skan, "Approximations to functions and to the solution of differential equations," Gt. Brit. Aero. Res. Council Rept. and Memo., 1799; Reprinted in Gt. Brit. Air Ministry Aero. Res. Comm. Tech. Rept., Vol. 1, 517-549, 1937.
19. Lanczos, C., "Trignometric interpolation of empirical and analytical functions," J. Math. Phys., Vol. 17, 123-199, 1938.
doi:10.1002/sapm1938171123
20. Lanczos, C., Applied Analysis, Englewood Cliffs (NJ) Prentice, 1956.
21. Finlayson, B. A. and L. E. Scriven, "The method of weighted residuals --- A review," Appl. Mech. Rev., Vol. 19, 735-748, 1966.
22. Villadsen, J. V. and W. E. Stewart, "Solution of boundary value problems by orthogonal collocation," Chem. Engg. Sci., Vol. 22, 1483-1501, 1967.
doi:10.1016/0009-2509(67)80074-5
23. Fletcher, C. A. J., Computational Galerkin Methods, Springer, New York, 1984.
doi:10.1007/978-3-642-85949-6
24. Finlayson, B. A., "Method of Weighted Residuals and Variational Principles with Applications to Fluid Mechanics, Heat and Mass Transfer," New York Academic, 1972.
25. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, New York Dover, 1964.
26. Stroud, A. H. and D. Secrest, Gaussian Quadrature Formulas, Englewood Cliffs (NJ) Prentice Hall, 1966.
27. Scarborough, J. B., Numerical Mathematical Analysis, London Oxford University Press, 1966.
28. Adams, M. J., An Introduction to Optical Waveguides, Chichester Wiley, 1981.
29. Yevick, D. and B. Hermansson, "New approach to perturbed optical waveguides," Opt. Lett., Vol. 11, 103-105, 1986.
doi:10.1364/OL.11.000103
30. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Englewood Cliffs (NJ) Prentice-Hall, 1971.
31. Aitken, R. C., (ed.), Stiff Computations, New York Oxford Press, 1985.
32. Hall, G. and J. M. Watt, Modern Numerical Methods for Ordinary Differential Equation, Oxford Clarendon, 1976.
33. Rahman, B. M. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Trans. Microwave Theory Tech., Vol. 32, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606
34. Scarmozzino, R., R. M. Osgood, and Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated optic applications," J. Opt. Soc. Am. A, Vol. 8, 724-731, 1991.
doi:10.1364/JOSAA.8.000724
35. Knox, R. M. and P. P. Toulis, "Integrated circuits for millimeter through optical frequency range," Symp. Submillimeter Waves, Broohlyn Polytechnic Institute, 1970.
36. Hocker, G. B. and W. K. Burns, "Mode dispersion in diffused channel waveguides by the effective index method," Appl. Opt., Vol. 16, 113-118, 1977.
doi:10.1364/AO.16.000113
37. Sharma, A., "On approximate theories of single mode rectangular waveguides," Opt. Quantum Electron., Vol. 21, 517-520, 1989.
doi:10.1007/BF02189133
38. Sharma, A., "A method for obtaining optimum equivalent 1-D index profiles for 2-D index profiles of optical waveguides," Optics in Complex Systems, Proc. SPIE, Vol. 1319, 118, F.Lanzl, H.-J. Preuss, G. Weigelt, eds., 1990.
doi:10.1117/12.22218
39. Mevenkemp, W. and E. Voges, "Modeling and beam propagation analysis of integrated electro-optic devices," AEU, Vol. 40, 289-296, 1986.
40. Marcatili, E. A. J. and A. A. Hardy, "The azimuthal effective index method," IEEE J. Quantum Electron., Vol. 24, 766-774, 1988.
doi:10.1109/3.192
41. Komori, K., S. Arai, Y. Suematsu, I. Arima, and M. Aoki, "Single mode properties of distributed reflector lasers," IEEE J. Quantum Electron., Vol. 25, 1235-1244, 1989.
doi:10.1109/3.29254
42. Wang, S., "Principles of distributed feedback and distributed Bragg reflector lasers," IEEE J.Quantum Electron., Vol. 10, 413-427, 1974.
doi:10.1109/JQE.1974.1068152
43. Hadjicostas, G., J. K. Butler, G. A. Evans, N. W. Carlson, and R. Amantea, "A numerical investigation of wave interactions in dielectric waveguides with periodic surface corrugations," IEEE J. Quantum Electron., Vol. 26, 893-902, 1990.
doi:10.1109/3.55531
44. Kogelnik, H. and C. V. Shank, "Coupled wave theory of distributed feedback lasers," J. Appl. Phys., Vol. 43, 2327-2335, 1972.
doi:10.1063/1.1661499
45. Jaggard, D. L. and C. Elachi, "Floquet and coupled wave analysis of higher order Bragg coupling in a periodic medium," J. Opt. Soc. Am., Vol. 66, 537-539, 1975.
46. Sharma, A. and S. Deb, "Wave propagation through peiodic waveguides: A numerical simulation method," Linear and Nonlinear Integrated Optics Confemnce in International Symposium on Integrated Optics, Lindau (Germany), April 11-15, 1994 (to appear in Proc. SPIE, Vol. 2212).
47. Ballman, R., Introduction to Matrix Analysis, New York McGraw Hill, 1960.
48. Agrawal, G. P. and A. H. Bobeck, "Modeling of distributed feed-back semiconductor lasers with axially-varying parameters," IEEE J. Quantum Electron., Vol. 24, 2407-2414, 1988.
doi:10.1109/3.14370
49. Haus, H. A., Waves and Fields in Optoelectronics, Englewood Cliffs Prentice-Hall, 1984.
50. Uscinski, B. J., Elements of Wave Propagation in Random Media, London McGraw-Hill, 1977.
51. Tatarskii, V. I., The Effects of the Turbulent Atmosphere on Wave Propagation, Springfield National Technical Information Service, 1971.
52. Ishimaru, A., Wave Propagation and Scattering in Random Media, New York Academic, 1978.
53. Prokhorov, A. M., F. V. Bunkin, K. S. Gochelashvily, and V. I. Shishov, "Laser irradiance propagation in turbulent media," Proc. IEEE, Vol. 63, 790-811, 1975.
doi:10.1109/PROC.1975.9828
54. Fante, R. L., "Electromagnetic beam propagation in turbulent media: An update," Proc. IEEE, Vol. 68, 1424-1444, 1980.
doi:10.1109/PROC.1980.11882
55. Brown, VV. P., Jr., "Fourth moment of a wave propagating in a random medium," J. Opt. Soc. Am., Vol. 62, 966-971, 1972.
doi:10.1364/JOSA.62.000966
56. Tur, M. and M. J. Beran, "Propagation of a finite beam through a random medium," Opt. Lett., Vol. 5, 306-308, 1982.
doi:10.1364/OL.5.000306
57. Gozani, J., "Numerical solution for the fourth order coherence function of a plane wave propagating in a two-dimensional Kolmogorovian medium," J. Opt. Soc. Am. A, Vol. 2, 2144-2151, 1985.
doi:10.1364/JOSAA.2.002144
58. Flatte, S. M. and F. D. Tappert, "Calculation of the effect of internal waves on oceanic sound transmission," J. Acoust. Soc. Am., Vol. 58, 1151-1159, 1975.
doi:10.1121/1.380798
59. Goyal, I. C., M. S. Sodha, and A. K. Ghatak, "Propagation of electromagnetic waves in a medium with random radial dielectric-constant gradient," J. Opt. Soc. Am., Vol. 63, 940-943, 1973.
doi:10.1364/JOSA.63.000940
60. Sharma, A., I. C. Goyal, N. K. Bansal, and A. K. Ghatak, "Propagation of Gaussian beams through parabolic-index optical waveguides with random dielectric constant gradient," Fiber Integrated Optics, Vol. 2, 299-314, 1979.
doi:10.1080/01468037908202108
61. Papanicolaou, G. C., D. McLaughlin, and R. Burridge, "A stochastic gaussian beam," J. Math. Phys., Vol. 14, 84-87, 1973.
doi:10.1063/1.1666177
62. Crosignani, B., B. Daino, and P. D. Porto, "Statistical coupled equations in lossless optical fibers," IEEE Trans. Microwave Theory Tech., Vol. 23, 416-420, 1975.
doi:10.1109/TMTT.1975.1128583
63. Hasegawa, A. and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers, 1. Anomalous dispersion," Appl. Phys. Lett., Vol. 142, 142-144, 1973.
doi:10.1063/1.1654836
64. Mollenauer, L. F., R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and solitons in optical fibers," Phys. Rev. Lett., Vol. 45, 1095-1098, 1980.
doi:10.1103/PhysRevLett.45.1095
65. Agrawal, G. P., Nonlinear Fiber Optics, Boston Academic, 1989.
66. Kurnar, A., "Soliton dynamics in a monomode optical fiber," Physics Reports, Vol. 187, 63-108, 1990.
doi:10.1016/0370-1573(90)90097-L
67. Satsurna, J. and N. Yajima, "Initial value problems of one dimensional self-modulation of nonlinear waves in dispersive media," Prog. Theor. Phys. Suppl., Vol. 55, 284-306, 1973.
68. Schubert, M. and B. Wilhelmi, Nonlinear Optics and Quantum Electronics, New York John Wiley, 1986.
69. Fisher, R. A. and W. K. Bischel, "The role of linear dispersion in plane-wave self phase modulation," Appl. Phys. Lett., Vol. 23, 661-663, 1973.
doi:10.1063/1.1654782
70. Hermansson, B. and D. Yevick, "Generalized propagation techniques --- Application to semiconductor rib waveguide Y-junctions," Photon. Technol. Lett., Vol. 2, 738-740, 1990.
doi:10.1109/68.60776
71. Glasner, M., D. Yevick, and B. Hermansson, "High-order generalized propagation techniques," J. Opt. Soc. Am. B, Vol. 8, 413-415, 1991.
doi:10.1364/JOSAB.8.000413
72. Hermansson, B. and D. Yevick, "Generalized propagation techniques," Opt. Lett., Vol. 16, 354-356, 1991.
doi:10.1364/OL.16.000354