1. Cohen, J. and D. Rind, "The effect of snow cover on the climate," J. Climate, Vol. 4, No. 7, 689-706, 1991.
doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2 Google Scholar
2. Rango, A., "Progress in snow hydrology remote-sensing research," IEEE Trans. Geosci. Remote Sensing, Vol. 24, No. 1, 47-53, 1986.
doi:10.1109/TGRS.1986.289587 Google Scholar
3. Dozier, J., "Recent research in snow hydrology," Rev. Geophys., Vol. 25, No. 2, 153-161, 1987.
doi:10.1029/RG025i002p00153 Google Scholar
4. Colbeck, S. C., "The layered character of snow covers," Rev. Geophys., Vol. 29, No. 1, 81-96, 1991.
doi:10.1029/90RG02351 Google Scholar
5. Arons, E. M. and S. C. Colbeck, "Geometry of heat and mass transfer in dry snow: A review of theory and experiment," Rev. Geophys., Vol. 33, No. 4, 463-493, 1995.
doi:10.1029/95RG02073 Google Scholar
6. Davis, R. E. and J. Dozier, "Stereological characterization of dry Alpine snow for microwave remote sensing," Adv. Space Res., Vol. 9, No. 1, 245-251, 1989.
doi:10.1016/0273-1177(89)90492-4 Google Scholar
7. Shi, J., R. E. Davis, and J. Dozier, "Stereological determination of dry-snow parameters for discrete-scatterer microwave modeling," Ann. Glacial., Vol. 17, 295-299, 1993.
doi:10.1017/S0260305500012994 Google Scholar
8. Stiles, W. H. and F. T. Ulaby, "The active and passive microwave response to snow parameters 1. wetness," J. Geophys. Res., Vol. 85, No. C2, 1037-1044, 1980.
doi:10.1029/JC085iC02p01037 Google Scholar
9. Baars, E. P. and H. Essen, "Millimeter-wave backscatter measurements on snow-covered terrain," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 3, 282-299, 1988.
doi:10.1109/36.3031 Google Scholar
10. Williams, L. D., J. G. Gallagher, D. E. Sugden, and R. V. Birnie, "Surface snow properties effects on millimeter-wave backscatter," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 3, 300-306, 1988.
doi:10.1109/36.3032 Google Scholar
11. Currie, N. C., J. D. Echard, M. J. Gary, A. H. Green, T. L. Lane, and J. M. Trostel, "Millimeter-wave measurements and analysis of snow-covered ground," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 3, 307-318, 1988.
doi:10.1109/36.3033 Google Scholar
12. Narayanan, R. M. and R. E. Mclntosh, "Millimeter-wave backscatter characteristics of multilayered snow surfaces," IEEE Trans. Antennas Propagat., Vol. 38, No. 5, 693-703, 1990.
doi:10.1109/8.53497 Google Scholar
13. Mead, J. B., P. S. Chang, S. P. Lohmeier, P. M. Langlois, and R. Mclntosh, "Polarimetric observations and theory of millimeterwave backscatter from snow cover," IEEE Trans. Antennas Propagat., Vol. 41, No. 1, 38-46, 1993.
doi:10.1109/8.210113 Google Scholar
14. Ulaby, F. T., T. F. Haddock, R. T. Austin, and Y. Kuga, "Millimeter- wave radar scattering from snow: 2. Comparison of theory with experimental observations," Radio Sei., Vol. 26, No. 2, 343-351, 1991.
doi:10.1029/90RS02559 Google Scholar
15. Chang, P. S., Observation and theory of polarimetric backscatter from snowcover at 35, 95 and 225 GHz, Ph.D. dissertation, University of Massachusetts, 1994.
16. Chang, P. S., J. B. Mead, E. J. Knapp, G. A. Sadowy, R. E. Davis, and R. E. Mclntosh, "Polarimetric backscatter from fresh and metamorphic snowcover at millimeter wavelengths," IEEE Trans. Antennas Propagat., Vol. 44, No. 1, 58-73, 1996.
doi:10.1109/8.477529 Google Scholar
17. Jordan, R., "A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89," Spec. Rep. 91-16, U.S. Army Corps of Eng., Cold Reg. Res. and Eng. Lab., Hanover, N.H., 1991. Google Scholar
18. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, 1985.
19. Twersky, V., "Coherent electromagnetic waves in pair-correlated random distributions of aligned scatterers," J. Math. Phys., Vol. 19, No. 1, 215-230, 1978.
doi:10.1063/1.523541 Google Scholar
20. Ishimaru, A. and Y. Kuga, "Attenuation constant of a coherent field in a dense distribution of particles," J. Opt. Soc. Am., Vol. 72, No. 10, 1317-1320, 1982.
doi:10.1364/JOSA.72.001317 Google Scholar
21. Koh, G., "Experimental study of electromagnetic wave propagation in dense random media," Waves Random Media, Vol. 2, No. 1, 39-48, 1992.
doi:10.1088/0959-7174/2/1/004 Google Scholar
22. Tsang, L., C. E. Mandt, and K. H. Ding, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations," Opt. Lett., Vol. 17, No. 5, 314-316, 1992.
doi:10.1364/OL.17.000314 Google Scholar
23. Tsang, L. and A. Ishimaru, "Radiative wave equations for vector electromagnetic propagation in dense nontenuous media," Journal of Electromagnetic Waves and Applications, Vol. 1, No. 1, 59-72, 1987.
doi:10.1163/156939387X00090 Google Scholar
24. Tsang, L., "Dense media radiative transfer theory for dense discrete random media with particles of multiple sizes and permittivities," Progress In Electromagnetics Research, Vol. 6, 181-230, 1992. Google Scholar
25. Wen, B., L. Tsang, D. P. Winebrenner, and A. Ishimaru, "Dense medium radiative transfer theory: Comparison with experiment and application to microwave remote sensing and polarimetry," IEEE Trans. Geosci. Remote Sensing, Vol. 28, No. 1, 46-59, 1990.
doi:10.1109/36.45744 Google Scholar
26. West, R., L. Tsang, and D. P. Winebrenner, "Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes," IEEE Trans. Geosci. Remote Sensing, Vol. 31, No. 2, 426-437, 1993.
doi:10.1109/36.214919 Google Scholar
27. Ding, K. H., L. M. Zurk, and L. Tsang, "Pair distribution fonctions and attenuation rates for sticky particles in dense media," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 12, 1585-1604, 1994. Google Scholar
28. Zurk, L. M., L. Tsang, K. H. Ding, and D. P. Winebrenner, "Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries," J. Opt. Soc. Am. A, Vol. 12, No. 8, 1772-1781, 1995.
doi:10.1364/JOSAA.12.001772 Google Scholar
29. Zurk, L. M., L. Tsang, and D. P. Winebrenner, "Scattering properties of dense media from Monte Carlo simulations with applications to active remote sensing of snow," Radio Sei., Vol. 31, No. 4, 803-819, 1996.
doi:10.1029/96RS00939 Google Scholar
30. Hallikainen, M., F. T. Ulaby, and M. Abdelrazik, "Dielectric properties of snow in the 3 to 37 GHz range," IEEE Trans. Antennas Propagat., Vol. 34, No. 11, 1329-1340, 1986.
doi:10.1109/TAP.1986.1143757 Google Scholar
31. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045 Google Scholar
32. Tanaka, M. and T. Nakajima, "Effects of oceanic turbidity and index of refraction of hydrosols on the flux of solar radiation in the atmosphere-ocean system," J. Quant. Spectrosc. Radiat. Transfer, Vol. 18, No. 1, 93-111, 1977. Google Scholar
33. Davis, R. E., A. W. Nolin, R. Jordan, and J. Dozier, "Towards predicting temporal changes of the spectral signature of snow in visible and near infrared wavelengths," Annals of Glacial., Vol. 17, 143-148, 1993. Google Scholar
34. Rowe, C. M., K. C. Kuiven, and R. Jordan, "Simulation of summer snowmelt on the Greenland ice sheet using a one-dimensional model," J. Geophys. Res., Vol. 100, No. D8, 16265-16273, 1995. Google Scholar
35. Hardy, J. P., R. E. Davis, R. Jordan, X. Li, C. Woodcock, W. Ni, and J. C. McKenzie, "Snow ablation modeling at the stand scale in a boreal jack pine forest," J. Geophys. Res., in press. Google Scholar
36. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, 1980.
37. Shapiro, R., "Solar radiative flux calculations from standard surface meteorological observations," Report AFGL-TR-83-0039, Systems and Applied Sciences Corporation, Riverdale MD, AF Geophysics Laboratory, 1982. Google Scholar
38. Shapiro, R., "A simple model for the calculation of the flux of direct and diffuse solar radiation through the atmosphere," Report AFGL-TR-87-0200, ST Systems Corporation, Lexington MA, AF Geophysics Laboratory, 1987. Google Scholar
39. Idso, S. B., "A set of equations for full spectrum and 8-14 μm and 10.5-12.5 μm thermal radiation from cloudless skies," Water Resources Res., Vol. 17, No. 2, 295-304, 1981. Google Scholar