1. Engheta, N. and M. M. I. Sadaoun, "Novel pseudochiral or Ω-medium and its applications," Proceedings of PIERS’91, 339, Cambridge, MA, July 1991. Google Scholar
2. Sadoun, M. M. I. and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or Ω-medium," Microwave Opt. Technol. Lett., Vol. 5, 184-188, 1992.
doi:10.1002/mop.4650050412 Google Scholar
3. Tretyakov, S. A., "Thin pseudochiral layers: approximate boundary conditions and potential applications," Microwave Opt. Technol. Lett., Vol. 6, 112-115, 1993.
doi:10.1002/mop.4650060209 Google Scholar
4. Toscano, A. and L. Vegni, "Novel characteristics of radiation patterns of a pseudochiral point-surface antenna," Microwave Opt. Technol. Lett., Vol. 7, 247-250, 1994.
doi:10.1002/mop.4650070512 Google Scholar
5. Norgren, M. and S. He, "Reconstruction of the constitutive parameters for an Ω material in a rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 43, 1315-1321, June 1995.
doi:10.1109/22.390189 Google Scholar
6. Toscano, A. and L. Vegni, "Isotropic-pseudochiral interface characteristics," Journal of Electromagnetic Waves and Applications, Vol. 9, 1045-1063, 1995.
doi:10.1163/156939395X00712 Google Scholar
7. Toscano, A. and L. Vegni, "Electromagnetic waves in planar pseudochiral Ω structures," Progress In Electromagnetic Research, Vol. 9, Bianisotropic and Bi-Isotropic Media and Applications, 181--218, EMW Publishing, Cambridge, 1994. Google Scholar
8. Mazur, J. and D. Pietrzak, "Field displacement phenomenon in a rectangular waveguide containing a thin plate of a Ω -medium," IEEE Microwave Guided Lett., Vol. 6, 34-36, Jan. 1996.
doi:10.1109/75.482063 Google Scholar
9. Paiva, C. R. and A. M. Barbosa, "A linear-operator formalism for the analysis of inhomogeneous bi-isotropicplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 40, 672-678, Apr. 1992.
doi:10.1109/22.127515 Google Scholar
10. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "New biorthogonality relations for inhomogeneous bi-isotropicplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, 629-634, Apr. 1994.
doi:10.1109/22.285069 Google Scholar
11. Bresler, A. D., G. H. Joshi, and N. Marcuvitz, "Orthogonality properties for modes in passive and active uniform waveguides," J. Appl. Phys., Vol. 29, 794-799, May 1958.
doi:10.1063/1.1723286 Google Scholar
12. Friedman, B., Principles and Techniques of Applied Mathematics, Wiley, 1956.
13. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "A linear-operator formalism for the analysis of inhomogeneous pseudochiral planar waveguides," Proceedings of the 1997 URSI North American Radio Science Meeting, 81, Montreal, Canada, July 1997. Google Scholar
14. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Radiation modes of an asymmetricc hiral slab waveguide – A general approach to a new canonical problem," Proceedings of PIERS’97, 684, Hong Kong, Jan. 1997. Google Scholar
15. Sammut, R. A., "Orthogonality and normalization of radiation modes in dielectric waveguides," J. Opt. Soc. Amer., Vol. 72, 1335-1337, Oct. 1982.
doi:10.1364/JOSA.72.001335 Google Scholar