1. Engheta, N. and M. M. I. Sadaoun, "Novel pseudochiral or Ω-medium and its applications," Proceedings of PIERS’91, 339, Cambridge, MA, July 1991.
2. Sadoun, M. M. I. and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or Ω-medium," Microwave Opt. Technol. Lett., Vol. 5, 184-188, 1992.
doi:10.1002/mop.4650050412
3. Tretyakov, S. A., "Thin pseudochiral layers: approximate boundary conditions and potential applications," Microwave Opt. Technol. Lett., Vol. 6, 112-115, 1993.
doi:10.1002/mop.4650060209
4. Toscano, A. and L. Vegni, "Novel characteristics of radiation patterns of a pseudochiral point-surface antenna," Microwave Opt. Technol. Lett., Vol. 7, 247-250, 1994.
doi:10.1002/mop.4650070512
5. Norgren, M. and S. He, "Reconstruction of the constitutive parameters for an Ω material in a rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 43, 1315-1321, June 1995.
doi:10.1109/22.390189
6. Toscano, A. and L. Vegni, "Isotropic-pseudochiral interface characteristics," Journal of Electromagnetic Waves and Applications, Vol. 9, 1045-1063, 1995.
doi:10.1163/156939395X00712
7. Toscano, A. and L. Vegni, "Electromagnetic waves in planar pseudochiral Ω structures," Progress In Electromagnetic Research, Vol. 9, Bianisotropic and Bi-Isotropic Media and Applications, 181--218, EMW Publishing, Cambridge, 1994.
8. Mazur, J. and D. Pietrzak, "Field displacement phenomenon in a rectangular waveguide containing a thin plate of a Ω -medium," IEEE Microwave Guided Lett., Vol. 6, 34-36, Jan. 1996.
doi:10.1109/75.482063
9. Paiva, C. R. and A. M. Barbosa, "A linear-operator formalism for the analysis of inhomogeneous bi-isotropicplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 40, 672-678, Apr. 1992.
doi:10.1109/22.127515
10. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "New biorthogonality relations for inhomogeneous bi-isotropicplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, 629-634, Apr. 1994.
doi:10.1109/22.285069
11. Bresler, A. D., G. H. Joshi, and N. Marcuvitz, "Orthogonality properties for modes in passive and active uniform waveguides," J. Appl. Phys., Vol. 29, 794-799, May 1958.
doi:10.1063/1.1723286
12. Friedman, B., Principles and Techniques of Applied Mathematics, Wiley, New York, 1956.
13. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "A linear-operator formalism for the analysis of inhomogeneous pseudochiral planar waveguides," Proceedings of the 1997 URSI North American Radio Science Meeting, 81, Montreal, Canada, July 1997.
14. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Radiation modes of an asymmetricc hiral slab waveguide – A general approach to a new canonical problem," Proceedings of PIERS’97, 684, Hong Kong, Jan. 1997.
15. Sammut, R. A., "Orthogonality and normalization of radiation modes in dielectric waveguides," J. Opt. Soc. Amer., Vol. 72, 1335-1337, Oct. 1982.
doi:10.1364/JOSA.72.001335