1. Ng, F. L., "Tabulation of methodsfor the numerical solution of the hollow waveguide problem," IEEE Trans. Microwave Theory Tech., Vol. MTT–22, 322-329, 1974. Google Scholar
2. Swaminathan, M., E. Arvas, T. K. Sarkar, and A. R. Djordjevic, "Computation of cutoff wavenumbersof TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation," IEEE Trans. Microwave Theory Tech., Vol. MTT–38, 154-159, 1990.
doi:10.1109/22.46425 Google Scholar
3. Sarkar, T. K., K. Athar, E. Arvas, M. Manela, and R. Lade, "Computation of the propagation characteristics of TE and TM modesin arbitrarily shaped hollow waveguidesutilizing the conjugate gradient method," J. Electromagn. Waves Appl., Vol. 3, 143-165, 1989. Google Scholar
4. Guan, J. M. and C. C. Su, "Analysis of metallic waveguides with rectangular boundariesb y using the finite-difference method and the simultaneous iteration with the Chebyshev acceleration," IEEE Trans. Microwave Theory Tech., Vol. MTT–43, 374-382, 1995.
doi:10.1109/22.348098 Google Scholar
5. Shu, C., "Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation," Ph.D. Thesis, University of Glasgow, U. K., 1991. Google Scholar
6. Bellman, R., B. G. Kashef, and J. Casti, "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations," J. Comput. Phys., Vol. 10, 40-52, 1972.
doi:10.1016/0021-9991(72)90089-7 Google Scholar
7. Shu, C. and B. E. Richards, "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokesequations," Int. J. Numer. Methods Fluids, Vol. 15, 791-798, 1992.
doi:10.1002/fld.1650150704 Google Scholar
8. Shu, C., Y. T. Chew, and B. E. Richards, "Generalized differential-integral quadrature and their application to solve boundary layer equations," Int. J. Numer. Methods Fluids, Vol. 21, 723-733, 1995.
doi:10.1002/fld.1650210903 Google Scholar
9. Du, H., K. M. Liew, and M. K. Lim, "Generalized differential quadrature method for buckling analysis," Journal of Engineering, Mechanics, Vol. 122, 95-100, 1996.
doi:10.1061/(ASCE)0733-9399(1996)122:2(95) Google Scholar
10. Shu, C., "Free vibration analysis of composite laminated conical shells by generalized differential quadrature," J. Sound Vibr., Vol. 194, 587-604, 1996.
doi:10.1006/jsvi.1996.0379 Google Scholar
11. Montgomery, J. P., "On the complete eigenvalue solution of ridged waveguide," IEEE Trans. Microwave Theory Tech., Vol. MTT–19, 547-555, 1971.
doi:10.1109/TMTT.1971.1127572 Google Scholar
12. Utsumi, Y., "Variational analysis of ridged waveguide mode," IEEE Trans. Microwave Theory Tech., Vol. MTT–33, 111-120, 1985.
doi:10.1109/TMTT.1985.1132958 Google Scholar
13. Israel, M. and R. Miniowitz, "An efficient finite element method for nonconvex waveguide based on hermitian polynomials," IEEE Trans. Microwave Theory Tech., Vol. MTT-35, 1019-1026, 1987.
doi:10.1109/TMTT.1987.1133801 Google Scholar