1. Strifors, H. C. and G. C. Gaunaurd, "Scattering of electromagnetic pulses by simple-shaped targets with radar cross section modified by a dielectric coating," IEEE Trans. Antennas Propagat., Vol. 46, No. 9, 1252-1262, 1998.
doi:10.1109/8.719967 Google Scholar
2. Schulz, R. B., V. C. Plantz, and D. R. Brush, "Shielding theory and practice," IEEE Trans. Electromag. Comp., Vol. 30, No. 3, 187-201, 1988.
doi:10.1109/15.3297 Google Scholar
3. Nishizawa, S. and O. Hashimoto, "Effectiveness analysis of lossy dielectric shields for a three-layered human model," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 277-282, 1999.
doi:10.1109/22.750223 Google Scholar
4. Michielssen, E., J.-M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, 1024-1031, 1993.
doi:10.1109/22.238519 Google Scholar
5. Norgren, M. and S. He, "On the possibility of reflectionless coating of a homogeneous bianisotropic layer on a perfect conductor," Electromagnetics, Vol. 17, 295-307, 1997.
doi:10.1080/02726349708908541 Google Scholar
6. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Press, Stevenage, U.K., 1995.
doi:10.1049/PBEW041E
7. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis, Washington, 1995.
doi:10.1201/9781315215365
8. Harrington, R. F., Field Computation by Moment Methods, McMillan, New York, 1960.
9. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineering, Univ. Press, Cambridge, 1990.
10. Leontovich, M. A., Investigations on Radiowave Propagation, Part II, Academy of Sciences, Moskow, 1948.
11. Karp, S. N., F. C. Karal, and Jr., "Generalized impedance boundary conditions with application to surface wave structures," Electromagnetic Theory, Part I, 479-483, Pergamon, New York, 1965. Google Scholar
12. Weinstein, A. L., The Theory of Diffraction and the Factorization Method, Golem, Boulder, Co., 1969.
13. Senior, T. B. A. and J. L. Volakis, "Derivation and application of a class of generalized impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 37, No. 12, 1566-1572, 1989.
doi:10.1109/8.45099 Google Scholar
14. Idemen, M., "Universal boundary conditions of the electromagnetic fields," J. Phys. Soc. Jap., Vol. 59, No. 1, 71-80, 1990.
doi:10.1143/JPSJ.59.71 Google Scholar
15. Volakis, J. L. and T. B. A. Senior, "Sheet simulation of a thin dielectric layer," Radio Science, Vol. 22, No. 7, 1261-1272, 1987.
doi:10.1029/RS022i007p01261 Google Scholar
16. Volakis, J. L. and T. B. A. Senior, "Application of a class of generalized boundary conditions to scattering by a metal-backe dielectric half-plane," Proc. IEEE, Vol. 77, No. 5, 796-805, 1989.
doi:10.1109/5.32070 Google Scholar
17. Ammari, H. and S. He, "Generalized effective impedance boundary conditions for an inhomogeneous thin layer in electromagnetic scattering," J. Electromagn. Waves Applicat., Vol. 11, 1197-12, 1997.
doi:10.1163/156939397X01106 Google Scholar
18. Ammari, H. and S. He, "Effective impedance boundary conditions for an inhomogeneous thin layer on a curved metallic surface," IEEE Trans. Antennas Propagat., Vol. 46, No. 5, 710-715, 1998.
doi:10.1109/8.668915 Google Scholar
19. Barkeshli, K. and J. L. Volakis, "TE scattering by a one-dimensional groove in a ground-plane using higher-order impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 38, No. 9, 1421-1428, 1990.
doi:10.1109/8.56994 Google Scholar
20. Volakis, J. L. and H. H. Syed, "Application of higher order boundary conditions to scattering by multilayer coated cylinders," J. Electromagn. Waves Applicat., Vol. 4, No. 2, 1157-1180.
doi:10.1163/156939390X00753 Google Scholar
21. Ricoy, M. A. and J. L. Volakis, "Derivation of generalized transition/boundary conditions for planar multiple-layer structures," Radio Science, Vol. 25, No. 4, 391-405, 1990.
doi:10.1029/RS025i004p00391 Google Scholar
22. Tretyakov, S. A., "Generalized impedance boundary conditions for isotropic multilayers," Microwave Opt. Technol. Lett., Vol. 17, No. 4, 262-265, 1998.
doi:10.1002/(SICI)1098-2760(199803)17:4<262::AID-MOP13>3.0.CO;2-7 Google Scholar
23. Galdi, V. and I. M. Pinto, "Derivation of higher-order impedance boundary conditions for stratified coatings composed of inhomogeneous-dielectric and/or homogeneous-bianisotropic layers,", submitted to Radio Science, Feb. 1999. Google Scholar
24. Kong, J. A., Theory of Electromagnetic Waves, Wiley, New York, 1975.
25. Graglia, R. D., M. S. Sarto, and P. L. E. Uslenghi, "TE and TM modes in cylindrical metallic structures filled with bianisotropic material," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 8, 1470-1477, 1996.
doi:10.1109/22.536030 Google Scholar
26. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.
27. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 91-96, 1991.
doi:10.1109/8.64441 Google Scholar
28. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman & Hall, London, U.K., 1983.
29. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964.
30. Jaggard, D. L., A. R. Michelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Phys., Vol. 118, 211-216, 1979.
doi:10.1007/BF00934418 Google Scholar
31. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE Antennas Propagat. Soc. Newsletter, Vol. 30, No. 5, 6-12, 1988.
doi:10.1109/MAP.1988.6086107 Google Scholar
32. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.