1. Fox, A. G. and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. Jour., Vol. 40, 453-458, March 1961.
doi:10.1002/j.1538-7305.1961.tb01625.x Google Scholar
2. Schawlow, A. L. and C. H. Townes, "Infrared and optical masers," Phys. Rev., Vol. 112, 1940-1949, Dec. 1958.
doi:10.1103/PhysRev.112.1940 Google Scholar
3. Jenkins, F. A. and H. E. White, Fundamentals of Optics, 3rd Ed., McGraw-Hill, New York, 1957.
4. Wait, J. R., Electromagnetic Waves in Stratified Media, Pergamon Press, New York, 1962.
5. Born, M. and E. Wolf, Principles of Optics, 6th Ed., Pergamon Press, Oxford, 1980.
6. Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.
7. McCleary, J., M.-Y. Li, and K. Chang, "Ka-band slot-fed higher order mode low-loss Fabry-Perot filters," IEEE Trans. Microwave Theory Tech., Vol. MTT-42, 1423-1426, July 1994. Google Scholar
8. Sanagi, M., E. Yamamoto, S. Nogi, and R. G. Ranson, "Axially symmetric Fabry-Perot power combiner with active devices mounted on both the mirrors," IEEE MTT–S Digest, 1259-1262, June 17-21, 1996. Google Scholar
9. Dryagin, Y. A., V. V. Parshin, A. F. Krupnov, N. Gopalsami, and A. C. Raptis, "Precision broadband wavemeter for millimeter and submillimeter range," IEEE Trans. Microwave Theory Tech., Vol. MTT-44, 1610-1613, Sept. 1996.
doi:10.1109/22.536616 Google Scholar
10. Fujii, T., H. Mazaki, F. Takei, J. Bae, M. Narihiro, T. Noda, H. Sakaki, K. Mizuno, and R. G. Ranson, "Coherent power combining of millimeter wave resonant tunneling diodes in a quasioptical resonator," IEEE MTT-S Digest, 919-922, June 17-21, 1996. Google Scholar
11. De Melo, M. T., M. J. Lancaster, H. Yokota, and C. E. Gough, "High temperature superconducting microstrip resonators for the measurement of films made by pyrolysis," Proc. 1995 SBMO/IEEE MTT-S, 868-872, July 24-27, 1995. Google Scholar
12. Mourachkine, A. P. and A. R. F. Barel, "Microwave measurement of surface resistance by the parallel-plate dielectric resonator method," IEEE Trans. Microwave Theory Tech., Vol. MTT-43, 544-551, March 1995.
doi:10.1109/22.372099 Google Scholar
13. Gevorgian, S., E. Carlsson, P. Linner, E. Kollberg, O. Vendik, and E. Wikborg, "Lower order modes of YBCO/STO/YBCO circular disk resonators," IEEE Trans. Microwave Theory Tech., Vol. MTT-44, 1738-1741, Oct. 1996. Google Scholar
14. Feng, G., M. V. Klein, J. Kruse, and M. Feng, "Mode coupling in superconducting parallel plate resonator in a cavity with outer conductive enclosure," IEEE Trans. Microwave Theory Tech., Vol. MTT-44, 944-952, June 1996.
doi:10.1109/22.506455 Google Scholar
15. Farber, E., G. Deutscher, G. Koren, and E. Jerby, "Microwave measurements of high Tc superconductors," 1996 9th Conv. Electrical and Electronics Eng. in Israel, 444-447, Nov. 5-6, 1996. Google Scholar
16. Roan, G. T. and K. A. Zaki, "Calculation of losses in a super-conductive resonator using FDTD," IEEE AP-S Digest, 384-387, July 13-18, 1997. Google Scholar
17. Casimir, H. B. G. and D. Polder, "The influence of retardation on the London --- van den Waals Forces," Physical Review, Vol. 73, 360-372, 1948.
doi:10.1103/PhysRev.73.360 Google Scholar
18. Casimir, H. B. G., "On the attraction between two perfectly conducting plates," Proc. Kon. Ned. Akad. Wetensch B51, Vol. 60, 793, 1948. Google Scholar
19. Lamoreaux, S. K., "Demonstration of the Casimir Force in the 0.6 to 6 μm range," Physical Review Letters, Vol. 78, No. 1, 5-8, 1997, and ``Erratum: Demonstration of the Casimir Force in the 0.6 to 6 μm range," Physical Review Letters, Vol. 81, No. 24, 5475-5476, 1998.
doi:10.1103/PhysRevLett.78.5 Google Scholar
20. Kaklamani, D. I. and A. Marsh, "Benchmarking high performance computing platforms in analyzing electrically large planar conducting structures via a parallel computed Method of Moments technique," Radio Sci., Vol. 31, 1281-1290, Sept.-Oct. 1996. Google Scholar