1. Chen, H. C., Theory of Electromagnetic Waves, McGraw-Hill, New York, 1983.
2. Kong, J. A., Electromagnetic Wave Theory, The 2nd ed., John Wiley & Sons, New York, 1986.
3. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
4. Singh, J. and K. Thyagarajan, "Analysis of metal clad uniaxial waveguides," Optics Communications, Vol. 85, 397-402, 1991.
doi:10.1016/0030-4018(91)90571-T Google Scholar
5. Lu, M. and M. M. Fejer, "Anisotropic dielectric waveguides," J. Opt. Soc. Am. A, Vol. 10, No. 2, 246-261, Feb. 1993.
doi:10.1364/JOSAA.10.000246 Google Scholar
6. Toscano, A. and L. Vegni, "Spectral electromagnetic modeling of a planar integrated structure with a general grounded anisotropic slab," IEEE Trans. Ant. Prop., Vol. 41, No. 3, 362-370, Mar. 1993.
doi:10.1109/8.233123 Google Scholar
7. Manenkov, A. B., "Orthogonality relations for the eigenmodes of lossy anisotropic waveguides (fibres)," IEE Proceedings-J, Vol. 140, No. 3, 206-212, June 1993. Google Scholar
8. Sawa, S., T. Kitamura, M. Geshiro, and T. Yoshikawa, "Low loss optical waveguide bends consisting of uniaxial crystalline material," IEICE Trans. Electron., Vol. E78-C, No. 10, 1373-1377, Oct. 1995. Google Scholar
9. Uzunoglu, N. K., P. G. Cottis, and J. G. Fikioris, "Excitation of electromagnetic waves in a gyroelectric cylinder," IEEE Trans. Ant. Propa., Vol. AP-33, No. 1, 90-99, Jan. 1985.
doi:10.1109/TAP.1985.1143471 Google Scholar
10. Ren, W., "Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Physical Review E, Vol. 47, No. 1, 664-673, Jan. 1993.
doi:10.1103/PhysRevE.47.664 Google Scholar
11. Lindell, I. V., "TE/TM decomposition of electromagnetic sources in uniaxial anisotropic media," Microwave and Optical Tech. Lett., Vol. 9, No. 2, 108-111, June 1995.
doi:10.1002/mop.4650090215 Google Scholar
12. Lindell, I. V. and F. Olyslager, "Decomposition of electromagentic sources in axially chiral uniaxial anisotropic media," J. Electromagnetic Waves and Applications, Vol. 10, No. 1, 51-59, 1996.
doi:10.1163/156939396X00207 Google Scholar
13. Lindell, I. V., "Decomposition of electromagnetic fields in bianisotropic media," J. Electromagnetic Waves and Applications, Vol. 11, No. 5, 645-657, 1997.
doi:10.1163/156939397X00882 Google Scholar
14. Lee, J. K. and J. A. Kong, "Dyadic Green’s functions for layered anisotropic medium," Electromagnetics, Vol. 3, 111-130, 1983.
doi:10.1080/02726348308915180 Google Scholar
15. Weiglhofer, W. S., "Dyadic Greens functions for general uniaxial media," IEE Proc. H., Vol. 137, No. 1, 5-10, Feb. 1990. Google Scholar
16. Weiglhofer, W. S., "A dyadic Green’s function representation in electrically gyrotropic media," AEU, Vol. 47, No. 3, 125-130, 1993. Google Scholar
17. Barkeshli, S., "Electromagnetic dyadic Green’s function for multilayered symmetric gyroelectric media," Radio Science, Vol. 28, No. 1, 23-36, Jan.-Feb. 1993.
doi:10.1029/92RS01926 Google Scholar
18. Barkeshli, S., "An efficient asymptotic closed-form dyadic Green’s function for grounded double-layered anisotropic uniaxial material slabs," J. Electromagnetic Waves and Applications, Vol. 7, No. 6, 833-856, 1993.
doi:10.1163/156939393X00903 Google Scholar
19. Cottis, P. G. and G. D. Kondylis, "Properties of the dyadic Green’s function for an unbounded anisotropic medium," IEEE Trans. Ant. Prop., Vol. 43, No. 2, 154-161, Feb. 1995.
doi:10.1109/8.366377 Google Scholar
20. Mudaliar, S. and J. K. Lee, "Dyadic Green’s functions for a two-layer biaxially anisotropic medium," J. Electromagnetic Waves and Applications, Vol. 10, 909-923, 1996.
doi:10.1163/156939396X00027 Google Scholar
21. Tai, C. T., Dyadic Green’s Functions in Electromagnetic Theory, 2nd Ed., IEEE Press, Piscataway, New Jersey, 1994.
22. Pearson, L. W., "On the spectral expansion of the electric and magnetic dyadic Greens functions in cylindrical harmonics," Radio Science, Vol. 18, No. 2, 166-174, March-April 1983.
doi:10.1029/RS018i002p00166 Google Scholar