1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. AP-14, 302-307, 1966. Google Scholar
2. Taflove, A., Computational Electrodynamics, The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.
3. Shlager, K. L. and J. B. Schneider, "A selective survey of the finite-difference time-domain literature," IEEE Antennas Propagat. Magazine, Vol. 37, No. 4, 39-56, 1995.
doi:10.1109/74.414731 Google Scholar
4. Fidel, B., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving window approach to pulse propagation," Proc. of the 1994 International IEEE/AP-S Symposium, 1414-1417, Seattle, WA. Google Scholar
5. Fidel, B., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving frame approach to pulse propagation," J. of Comp. Phys., Vol. 138, 480-500, 1997.
doi:10.1006/jcph.1997.5827 Google Scholar
6. Hile, C. V. and W. L. Kath, "Numerical solutions of Maxwell’s equations for nonlinear-optical pulse propagation," J. Opt. Soc. Am. B, Vol. 13, No. 6, 1135-1145, 1996.
doi:10.1364/JOSAB.13.001135 Google Scholar
7. Pemper, Y., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving coordinate frame approach for long range tracking of collimated wavepackets," SIAM J. Appl. Math., submitted. Google Scholar
8. Lee, D. and A. D. Pierce, "Parabolic equation development in recent decade," J. Comput. Acoust., Vol. 3, No. 2, 95-173, 1995.
doi:10.1142/S0218396X95000070 Google Scholar
9. Jensen, F. B., W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, AIP Press, Woodbury, NY, 1994.
10. Masoudi, H. M. and J. M. Arnold, "Parallel beam propagation methods," IEEE Photon. Technol. Lett., Vol. 6, No. 7, 848-850, 1994.
doi:10.1109/68.311475 Google Scholar
11. Murphy, J. E., "Finite-difference treatment of a time-domain parabolic equation: Theory," J. Acoust. Soc. Am., Vol. 77, No. 5, 1406-1417, 1985. Google Scholar
12. Masoudi, H. M. and J. M. Arnold, "Parallel beam propagation method for the analysis of second harmonic generation," IEEE Photon. Technol. Lett., Vol. 7, No. 4, 400-402, 1995.
doi:10.1109/68.376815 Google Scholar
13. McDonald, B. E. and W. A. Kuperman, "Time domain formulation for pulse propagation including nonlinear behavior at a caustic," J. Acoust. Soc. Am., Vol. 81, No. 5, 1406-1417, 1987.
doi:10.1121/1.394546 Google Scholar
14. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Mathematics of Computation, Vol. 31, 629-651, 1977.
doi:10.1090/S0025-5718-1977-0436612-4 Google Scholar
15. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagnetic Compatibility, Vol. 23, 377-382, 1989. Google Scholar
16. Heyman, E., "Pulsed beam propagation in an inhomogeneous medium," IEEE Trans. Antennas Propagat., Vol. AP-42, 311-319, 1994.
doi:10.1109/8.280715 Google Scholar
17. Yariv, A., Introduction to Optical Electronics, Holt, Rinehart and Winston, 1971.
18. Aloni, E., R. Kastner, E. Heyman, and R. W. Ziolkowski, "Reduction of numerical dispersion errors in the FDTD with multiple moving coordinate systems ,", URSI Meeting, Baltimore, MD, July 21-26, 1996. Google Scholar